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Abstract. This paper addresses the key question of this book by apply-
ing the chaotic dynamics found in biological brains to design of a strictly
sequential artificial neural network-based natural language understand-
ing (NLU) system. The discussion is in three parts. The first part ar-
gues that, for NLU, two foundational principles of generative linguistics,
mainstream cognitive science, and much of artificial intelligence —that
natural language strings have complex syntactic structure processed by
structure-sensitive algorithms, and that this syntactic structure deter-
mines string semantics— are unnecessary, and that it is sufficient to pro-
cess strings purely as symbol sequences. The second part then describes
neuroscientific work which identifies chaotic attractor trajectory in state
space as the fundamental principle of brain function at a level above
that of the individual neuron, and which indicates that sensory process-
ing, and perhaps higher cognition more generally, are implemented by
cooperating attractor sequence processes. Finally, the third part sketches
a possible application of this neuroscientific work to design of an a se-
quential NLU system.

Introduction

The key question of this book is: "What can we learn from cognitive neuroscience
and the brain for building new computational neural architectures?’. This paper
addresses that question in relation to natural language processing (NLP), and
the answer involves application of chaotic dynamics found in biological brains
to design of artificial neural network (ANN)-based string processing architec-
tures. Specifically, it argues that, in designing and implementing NLP systems
for semantic interpretation of natural language strings, henceforth referred to as
natural language understanding (NLU) systems:

1. Two foundational principles of generative linguistics, mainstream cognitive
science, and much of artificial intelligence (AI) and NLP —that NL strings
have complex syntactic structure processed by structure sensitive algorithms,
and that this syntactic structure determines string semantics— are unneces-
sary, and it is sufficient in principle for NLU purposes to process strings
purely as symbol sequences, but there are substantial practical problems
associated with sequential NLU.

2. Neuroscientific results support the principle of sequential NLU, and also
provide potential solutions to the practical problems associated with it.
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3. It consequently makes sense to investigate the feasibility of sequential NLU
by developing an NLU system based on the results in (2).

Two preliminary comments. The first is that NLU is here understood as lan-
guage engineering —as the design and implementation of machines that process
natural language for some purpose— and not as cognitive modeling. Secondly,
given the current deluge of results on brain mechanisms generated by new imag-
ing techniques, there are bound to be and in fact are controversies about their
interpretation. Given the above construal of NLU, however, there is no need to
engage in these controversies: it is legitimate to select and use brain mechanisms
proposed by neuroscience purely on the grounds that they seem useful from an
engineering point of view. The ideal, of course, is to engineer in accordance with
the way the brain really does language, since it is the only known physical device
that implements all human linguistic abilities and is thus the definitive model,
but pending final understanding of the relevant mechanisms, there is no need to
wait for the dust to settle.

1 The Need for Complex Syntactic Structure in NLU

This section is in two main parts. The first motivates the challenge to the need
for complex syntactic structure in NLU, and the second presents the case for the
principle of sequential mapping of NL strings to meanings.

1.1 Motivation

In the 1930s and 1940s, mathematical logicians formalized the intuitive notion of
an effective procedure as a way of determining the class of functions that can be
computed algorithmically. A variety of formalisms was proposed —recursive func-
tions, lambda calculus, rewrite systems, artificial neural networks, automata— all
of them equivalent in terms of the functions they can compute. Automata theory
was to predominate in the sense that, on the one hand, it provided the theoret-
ical basis for the architecture of most current computer technology, and, on the
other, it is the standard computational formalism in numerous science and en-
gineering disciplines. Automata theory was, moreover, soon applied to modeling
of human intelligence, and has dominated thinking about human cognition ever
since [43,40,20,39,80]. This approach to cognitive modeling attained apotheosis
in the late 1970s, when Newell and Simon [61] proposed the Physical Symbol
System Hypothesis (PSSH), where ’physical symbol system’ is understood as a
physical implementation of a mathematically stated effective procedure, a prime
example of which is a programmed Turing Machine. The essence of the PSSH
approach to cognitive modeling was set out by Fodor and Pylyshyn in 1988 [32]:

— There are representational primitives —symbols— called atomic representa-
tions.

— Being representational, symbols have semantic content, that is, each symbol
denotes some aspect of the world.
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— A representational state consists of one or more symbols, each with an as-
sociated semantics, 'in which (i) there is a distinction between structurally
atomic and structurally molecular representations, (ii) structurally molec-
ular representations have syntactic constituents that are themselves either
structurally molecular or structurally atomic, and (iii) the semantic content
of a representation is a function of the semantic contents of its syntactic
parts, together with the syntactic structure’.

— Input-output mappings and the transformation of mental states ’are defined
over the structural properties of mental representations. Because these have
combinatorial structure, mental processes apply to them by virtue of their
form’.

Therefore, ’if in principle syntactic relations can be made to parallel se-
mantic relations, and if in principle you have a mechanism whose operation on
expressions are sensitive to syntax, then it is in principle possible to construct
a syntactically driven machine whose state transitions satisfy semantic criteria
of coherence. The idea that the brain is such a machine is the foundational
hypothesis of classical cognitive science’.

Modeling of the human language faculty has been paradigmatic for the PSSH-
based approach in cognitive science. The discipline concerned with this language
modeling, generative linguistics, has developed considerably since Chomsky’s
pioneering work in the mid-1950s, but at least one foundational principle has
remained unchanged: that NL strings have a structure beyond the strictly tem-
poral or spatial sequentiality of speech utterances and text. More specifically,
they are held to have a compositional phrase structure of the sort described
above by Fodor and Pylyshyn, or, slightly more formally, given a phrase struc-
ture grammar (or equivalently, an automaton) that generates a language L, the
tree diagrams that represent the structure of sentences in L must allow simul-
taneous left and right phrasal nonterminal branching from parent nodes; this
is what is meant by ’complex syntactic structure’ throughout the current dis-
cussion. The notion that such phrase structure determines sentence meaning
is, moreover, central to currently dominant approaches to NL semantics [55,76,
25,11,26]. In model theoretic semantics [63,54], for example, the link between
syntactic structure and meaning is made via the principle of compositionality,
which says that the meaning of a syntactically complex expression is a function
of the meanings of its constituent words and of the syntactic rules by which
they are combined, and are realized by grammars in which each syntactic rule
is associated with a semantic rule that specifies the meaning of a constituent in
terms of the meanings of its own immediate constituents (the ’rule-to-rule’ hy-
pothesis). A derivation according to such a grammar on the one hand generates
a sentence with an associated syntactic structure, and on the other the meaning
of the sentence; this explains how syntactic structure systematically determines
the meanings of the sentences of a language.

The PSSH has, furthermore, been influential not only in the cognitive sciences
but also in Al, here understood as an engineering discipline which seeks to design
and implement machines that emulate (aspects of) human behaviour. Al has
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historically been closely associated with PSSH-based cognitive science [43,73]:
in essence, cognitive science has proposed models, and Al has attempted to
implement them. NLU, more particularly, has been closely tied to developments
in generative grammar.

Now, since the early 1980s, perceived shortcomings of the PSSH-based ap-
proach to cognitive science has generated a variety of challenges to its dominance
—by artificial neural network [58,2,21,22] and dynamical system theories [83,48,
69,10,84,38,62,4] as paradigms for cognitive modeling, and by a radical shift of
emphasis away from the study of the innate ’higher’ functions like reasoning and
language to concentration on developmental issues like the evolution of cognition
and the interrelationship of mind, brain, body, and external environment [47,23,
46,39,62]. At the same time, the main thrust of Al research has retreated from
the grand aim of general, human-level machine intelligence and has concentrated
on developing systems that work well in restricted domains, such as expert sys-
tems, handwriting and speech recognition, and robotics and vision in specific
industrial applications [31,57]. In response, at least some of those Al researchers
who still believe in the achievability of general machine intelligence have in-
creasingly turned to the same approaches as their cognitive science colleagues
6,3,82,29,57]. In NLU specifically [42,7,1,27,24], there now exist practical natu-
ral language interfaces in domain-specific applications, primarily databases and
expert systems, but to my knowledge no reliable, broad-coverage natural lan-
guage understanding system currently exists, nor do the prospects for one look
promising. The problem is not with syntax —after several decades’ effort, parsing
algorithms capable of supporting reasonably large-scale general NLU systems are
available [67,1,77,66,5] — but with implementation of semantics and pragmatics
[42,1,68,56,71]. For natural language understanding, linguistic expressions must
be related to the system’s awareness of, interaction with, and expectations of
the world, and the main lesson of the NLU work done in the 1970s and early
1980s is that any NLU system needs, at the very least, to represent, manipulate,
and update real-world knowledge efficiently. Various knowledge and belief rep-
resentation and update mechanisms have been developed [49,1,57], such as logic
formalisms, semantic networks, schemas, frames, scripts, and rules, and while
these have been shown to work well in small-scale, carefully managed applica-
tions, none has so far been scaled up successfully to usefully large general NLU
systems.

The motivation for proposing to dispense with compositional structure and
structure-sensitive processing in NLU, therefore, is simply that it has reached
an impasse [30] (see however reviews of [30] in Artificial Intelligence 80 (1996)).
This is not to claim that the PSSH-based approach to NLU cannot succeed. If
human language, and cognition more generally, are computable functions [64,65,
9], then a PSSH virtual machine that implements them must exist. The problem
is that no one has found it, nor does it look like it will be found soon, and as
such it seems sensible to try other approaches.
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1.2 Sequential Mapping of Strings to Meanings

It should be uncontroversial to observe that the research agendas of generative
linguistics and NLU differ: to judge by their extensive research literatures, lin-
guistics is science and NLU is engineering. Like any other science, linguistics aims
to state empirically adequate and maximally expressive theories to explain its
domain of interest, whereas the aim of NLU is to design and construct physical
machines that respond to natural language utterances or text in an acceptably
human-like way. Being physical, every NLU system is bounded in all aspects of
its operation —in the lengths of its input and output strings, in the number of
strings in can process in its operational lifetime, and in the memory and pro-
cessing time at its disposal. This means that the unbounded input and output
tapes and memories of automata theory need not be a design consideration, and
in particular that the I/O sets which an NLU device will be asked to process
must be finite. Now, a fundamental result in automata theory is that any finite
mapping can be implemented by a finite state automaton (FSA) [44,8], and to
an FSA every string has the same structure: strict sequence. It follows that any
NLU function can be implemented by an F'SA, and that sequential processing
of input strings is sufficient for the purpose.

That FSA architecture, and thus sequential processing, is sufficient for NLU
has been known since the early years of generative linguistics. Indeed, Chomsky
himself pointed it out [12,14,15]. Despite that, finite state NLU has been all but
ignored until fairly recently [74,51,18,50,19,52,70]. The various reasons for the
lack of interest in FSAs are valid from a generative linguistics point of view, but
. irrelevant for NLU. These are briefly dealt with in what follows (see [16] and [17]
for closely related discussions).

— Trivial finiteness
One might want to argue that to insist on the finiteness of NLU functions
is an excessively theoretical point —that string length, I/O set sizes, and
the number of processing states / memory size in a real-world application
might be so large as to be unbounded for all but the most abstemiously
theoretical purposes— and that this disqualifies FSAs in practice. This has
some initial plausibility, but consider these two arguments. Firstly, how long
are NL strings in daily speech intercourse and text production? There are
almost certainly studies that provide maxima, minima, means, and standard
deviations for string length across different languages, but speaker / reader
intuition serves to make the required point here (for a discussion of sentence
length bounds see [53]). In everyday fact, most strings are very short —
a dozen words, perhaps, or occasionally two or three times that number.
Few extend beyond, say, 100 words, and those that do become increasingly
incomprehensible. For NLU purposes, therefore, we are not dealing with
what one might call trivially bounded strings which are so long —perhaps
100,000,000 words— that they are unbounded for any practical purpose. And,
secondly, while it is true that, even with the above practical string length
constraint, a native speaker of some language will typically produce a very
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large number of strings in a lifetime, one has to keep in mind that NLU
is engineering. Vocabulary size, string length, and the permitted range of
syntactic patterns are under the designer’s control. A fully human level of
linguistic competence is very difficult to achieve, as the history of Al over
the past several decades has shown, but if one is prepared to work to a less
general specification the problem size can be scaled down by fiat.

Weak generative capacity

A fundamental result of formal language and automata theory is that FSAs
cannot generate the language a™b", that is, sets of strings in which a se-
quence of some symbol a is followed by exactly the same length sequence
of another symbol b, where n is any positive integer. It has further been
claimed (misleadingly, but that is another matter) that NLs contain strings
with the a”b™ pattern, and that FSAs are consequently unable to generate
the class of natural languages [13,41,63]. This argument assumes unbounded
n, which is legitimate given the aims of linguistic theory. But, in terms of
NLU as language engineering, n must be bounded; where n is bounded it is
prespecifiable, and in such a case the a™b™ pattern can be generated by an
FSA. The argument against finite state NLU from weak generative capacity
is thus irrelevant. An analogous argument applies to the cross-serial depen-
dency pattern that was used to disqualify the class of context free grammars
/ pushdown automata, and by transitivity regular grammars / FSAs, as a
basis for NL modeling [41,79,63].

Strong generative capacity

Complex syntactic structure is fundamental to the explanatory capacity of
linguistic syntactic theory because it allows intuitions and empirical findings
about natural language word order to be expressed in satisfying generaliza-
tions. Because they cannot deal with complex syntactic structures, FSAs are
effectively useless for linguistic modeling. Chomsky pointed out their impov-
erished explanatory capacity in the 1950s, and they have for that reason
rightly been ignored by generative linguists ever since. On the present view,
however, NLU is mot linguistic modeling, but is interested in constructing
physical devices with some particular I/O behaviour. And, in view of the
foregoing discussion, there is no good theoretical reason to prefer any one
automaton class over the others in NLU design: a finite string set does not
imply the computational class of the automaton that generates it. In other
words, explanatory adequacy is irrelevant to the choice of computational
architecture for NLU purposes.

Compositional semantics

As noted, compositionality explains how syntactic structure systematically
determines the meanings of the sentences of a language. An FSA can sup-
port a compositional semantics, but that semantics is explanatorily trivial.
Because an FSA treats the syntax of every string as strictly sequential, an
FSA-based compositional semantic theory can assert only one thing —that
the meanings of all sentences in all languages are sequentially concatenative.
This amounts to proposing a semantic theory which pairs each syntactically
legal string with a meaning, and simply lists the pairs. Because a list cap-



448 H. Moisl

tures no generalizations, FSAs are of no interest for NL semantic theory.
Once again, however, NLU is not primarily concerned with explanation, and
this conclusion is consequently irrelevant. A compositional semantic theory
that uses complex syntactic structure gives a particular explanation of how
sentences map to meanings, but from a language engineering point of view
a list would be equally valid in principle. NLU is, in short, not required to
adopt compositionality.

There is, then, no theoretical obstacle to a finite state, and thus sequential,
approach to design and implementation of NLP and more specifically NLU de-
vices. In fact, the past decade has seen a marked increase of interest in a finite
state approach to NLP in such areas as speech recognition, phonological and
morphological analysis, syntactic parsing, and information extraction from text
[42,16,59,75,17]. There is, however, a significant silence on semantics, for reasons
we are about to come to.

In principle, design of a device that maps strings to meanings is easily for-
mulated. Because NLs are finite sets for NLU purposes, it is possible to define
a string-to-meaning function f of (string, meaning) pairs. Once the set exists,
all that is required for implementation is an algorithm for table lookup: given a
string as input, the device returns the associated meaning as output. An appro-
priately configured FSA is one possible algorithm. Each lexically distinct string
drives the machine through a characteristic state sequence, and the final state,
which uniquely identifies the string, is mapped to the associated meaning. As
a generative linguistic account of the human language faculty, this is of course
completely inadequate since it amounts to no more than a list and hence explains
nothing, as noted. For NLU, however, the only issue is whether or not such an
approach is feasible in a specific NLU domain. And there are in fact difficult
problems with it; the two main ones are:

1. Meaning and its representation
To be able to construct a (string, meaning) pair list, it is necessary to have a
clear idea what ’strings’ and ‘meanings’ are, and to have a way of represent-
ing them so that they can be processed. The ontology and representation
of symbol strings is straightforward. For meanings they are anything but.
There is a long history of philosophical debate about how the concept of lin-
guistic meaning might be understood, and, at the moment, there is a range of
possibilities with little agreement among them [Craig 1998]. Model-theoretic
NL semantics, pioneered by Montague, is the currently-dominant approach
within generative linguistics [63,54], but others, such as the ’use’ theory of
linguistic meaning propounded by Wittgenstein, are still being developed
[45]. Because it relies crucially on the notion of complex syntactic structure
in the generation of sentence meaning, model-theoretic semantics is unavail-
able to a sequential NLU system for practical purposes, and choice among
remaining alternatives is not clear. Nor, assuming a choice has been made,
is it clear how abstractly-characterized meanings should be represented.

2. List construction
Assuming a suitable meaning representation has been adopted, it is possible
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to compile (string, meaning) pair lists explicitly for small, domain-restricted
applications. Extension to general, real world NLU would, however, clearly
be extremely onerous and almost certainly impractical.

The neuroscientific results described in the next section offer a good starting
point for solutions to these problems.

2 Meaning and Sequential Processing in the Brain

On the basis of his work on biological sensory systems, Walter Freeman proposes
fundamental principles of brain function and how these implement essential as-
pects of human cognitive behaviour. These proposals relate directly to sequential
NLU, in that they include both a coherent view of the nature of meaning, and
an account of the biological implementation of meaning that features purely se-
quential brain dynamics, with no reference to complex syntactic structure. We
look first of all at Freeman’s view of meaning and then at its implementation
(what follows is based on [81,33,34,35,36,37,38]). A caveat, however. What fol-
lows is a very brief summary of a comprehensive account of human behaviour
and its biological basis developed over a lifetime’s research. As such, it inevitably
and grossly oversimplifies, and may also misconstrue or misrepresent Freeman’s
work; apologies, where appropriate, are offered in advance.

2.1 Meaning

Intentionality is fundamental to Freeman’s view of meaning. This is not the
intentionality of twentieth-century analytic philosophy and of PSSH-based cog-
nitive science, where the term denotes the ’aboutness’ of mental representations,
and is used to designate the relation between mental states and objects or events
in the world, whether real or imaginary. Rather, his understanding of the term
is derived from that of the thirteenth-century philosopher Thomas Aquinas, for
whom intentionality had to do with goal-directed action in the world, and mod-
ification of the self in response to that consequences of that action as a way
of coming to understand the world and the place of the self in it. Analyzed in
terms of intentionality in this sense, an organism’s existence in the world over
time is a sequence of intents, where an intent has three stages: (1) formulation
of a goal to whose realization an action will be directed, (2) perception of the
environment, execution of the intended action, and perception of consequences
for the self, and (3) learning from these consequences relative to the goal. In-
tents in the sequence are not independent, but are linked to one another in that
goal formulation, execution, and adaptation at any given point in the sequence
occur in the context of, and are informed by, the organism’s lifetime intentional
history up to that point. Thus, a hungry cat formulates a goal of catching food.
On the basis of previous intentional action, it knows that it can achieve that
goal by hiding in tall grass, priming itself for a spring, and then pouncing on
an animal smaller than itself. It has a visual perception of suitable prey and
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pounces, but because the smaller animal on this occasion is an urban rat that
fights back, the cat experiences pain. From the perceptions of rat and of pain, the
cat learns to pick on different small animals in future. This sort of intentionality
is characteristic of all vertebrates, in that they observably act in furtherance of
their survival in specific environments and modify their behaviour in response to
the consequences of their actions. There are degrees of intentionality, however: a
salamander has much simpler, shorter-term goals and capacities for action and
learning than does a human.

Meaning arises from intentionality. It is the organism’s learned awareness of
the interrelationship of perceived states of the world, its goals, and its actions in
pursuance of those goals, at any given point in its intentional evolution. In the
above example, the visual perception of a rat comes to mean pain to the cat as a
result of learning. Meaning is, moreover, organism-specific: to a bigger, tougher
cat perception of a rat might mean something very different. And, again, there
are degrees of meaning commensurate with the richness of the intentionality
available to a species. A given odour can presumably mean only a limited range
of things to a salamander —food, danger, safety— whereas, to a human, it can
not only mean such things, but also, for example, a subtle blend of emotional
experience.

2.2 The Implementation of Meaning

Freeman models the vertebrate brain as a hierarchy of interacting nonlinear
dynamical systems whose global evolution implements intentionality. In humans,
these dynamical systems correspond to the modules of the limbic system, the
sensory cortices, and the areas of the neocortex associated with higher cognitive
functions. All three are required to implement full human intentionality, but to
keep the discussion tractable the focus will be on the first two only. This will
be sufficient for present purposes: the interaction of limbic system and sensory
cortices is the necessary basis for human intentionality, and the principles that
Freeman proposes for its operation extend straightforwardly to interaction with
the neocortex (on which see [38] chapters 5-7).

The rest of this subsection develops the implementation of meaning in three
parts. The first looks at the methodology and results of Freeman’s work on the
olfactory system, which is the empirical basis for his proposals on general brain
function. The second then outlines his interpretation of these results in terms
of dynamical systems theory. And the third describes his proposals for extend-
ing the dynamical systems analysis of the olfactory system to other perceptual
modalities such as vision, and to the integration of these modalities in the en-
thorinal cortex and the hippocampus so as to implement perceptually grounded
meaning.

The Olfactory System. Freeman has concentrated on olfaction because it
is the primary perceptual system in evolutionary terms, and, in his view, is
fundamental to understanding of the other perceptual modalities.
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The operation of the sensory modalities has two distinct aspects: sensation
and perception (see also [80]). Sensation is the transduction of external signals
to spatial patterns of neural activation through stimulation of neural receptors
on the sensory surface, here the nose, whereas perception involves transforma-
tion of this spatial pattern within the brain. Freeman has been concerned with
perception. He has studied the behaviour of the olfactory system, comprising the
nasal receptors, olfactory bulb, and olfactory cortex, in rabbits and cats. This
was done by surgically attaching an 8 x 8 array of electrodes to the olfactory
bulb. The animals were then trained to respond to conditioned and uncondi-
tioned stimuli and, when training was complete, an EEG was used to record the
responses of the bulb both to training odorants and to odorants not previously
experienced. The main observations relevant to the current discussion were:

— At rest, that is, when no learned odorant was present for the animal to smell,
the EEG showed continual background activity with an aperiodic waveform.

_ With each inhalation of a learned odorant there was a burst of activity
which ended at the onset of exhalation. The burst was an oscillation with a
common waveform throughout the bulb, but whose amplitude varied from
place to place in it. This amplitude modulation (AM) constitutes a bulb-
wide spatial pattern of activation. There was a characteristic AM pattern
associated with each learned stimulus in the sense that each presentation of a
specific odorant produced an AM pattern that differed from those associated
with other learned odorants.

— When the animal was presented with a stimulus that was unconditioned
during training, or a stimulus not previously encountered, there was no burst.

_ When an animal trained on some set of stimuli was further trained to add
a conditioned stimulus to its existing repertoire, two things happened: a
new AM pattern was produced when the new odorant was presented after
training, and all existing AM patterns were modified to a greater or lesser
degree.

The Olfactory System as a Dynamical System. Neural populations within
the brain are instances of macroscopic ensembles in an extensive range of
naturally-occurring complex systems that evolve over time; examples are ecolo-
gies, social groups, and weather systems. They share the following characteristics
with such ensembles: (i) there are many semi-autonomous elements, (ii) each ele-
ment interacts with many others, (iii) the input-output relations of the elements
are nonlinear, and (iv) there is an energy source and sink. The behaviour of
such natural systems over time is standardly modeled using dynamical systems
theory. A brain consists of a very large number of elements with nonlinear input-
output behaviour that interact by means of rich and recurrent interconnections,
and has a metabolic energy source and sink. As such it is a natural step to extend
the dynamical systems approach to the study of the brain as well, and that is
what Freeman has done.

The olfactory bulb and cortex constitute a system of coupled oscillators whose
nonlinearity and recurrence permits the full range of behaviours associated with
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nonlinear dynamical systems, including not only point and limit-cycle but also
chaotic attractors:

— The aperiodic wave which the EEG detects in the absence of sensory stimu-
lus is the olfactory bulb in a chaotic attractor. Each module on its own has
only a point attractor and a limit cycle attractor, that is, an oscillation with
a characteristic frequency. The chaotic activity results from the coupling of
the modules by both forward and feedback connections. Their characteristic
frequencies differ, and they cannot agree on a common frequency, and so
oscillate aperiodically. That this activity results from the modules’ interac-
tion is clear: on the one hand, it does not arise from stimulation originating
elsewhere in the brain, since it persists even when the olfactory system is
surgically isolated from the brain, and on the other, if the olfactory modules
are surgically separated, they immediately settle into their characteristic os-
cillation. This chaotic basal state keeps the olfactory system in a constant
state of readiness, so that even a small perturbation of the right sort can
move it quickly to another attractor.

— The AM patterns are chaotic attractors in the bulb’s state space. In a trained
system, the stimulus from a specific odorant increases the gain in the bulb,
and causes a state transition from the basal chaotic attractor to an attractor
associated with that stimulus. On exhalation, the stimulus from the trans-
duction pattern is removed, the gain is reduced, and the bulb returns to its
basal chaotic attractor. In other words, the bulb is destabilized by gain from
external stimulation.

— The odorant-specific attractors, that is, the AM patterns, are formed during
training by the development of assemblies in the bulb via Hebbian synaptic
modification. The result, in a trained animal, is that the olfactory bulb has
a landscape of chaotic attractors including a basal attractor to which the
system reverts in the absence of stimulation, and one for each of the learned
odorants. The change in all existing AM patterns when a new odorant is
added to the animal’s training results from crowding of the attractors in the
landscape as a new one is added.

Perceptually-grounded Meaning. On the above understanding of meaning,
perception of an odour on its own means nothing; indeed, training on uncondi-
tioned odorants does not result in formation of an AM pattern / attractor for the
odorant. To mean something, an odorant has to correlate with perceptions from
one or more other sensory modalities. How is this implemented in the brain? By
perceptual integration in the enthorinal cortex. The enthorinal cortex is one of
the modules of the limbic system, and is remarkable first and foremost for the
large number of other brain areas with which it interacts. Of particular relevance
here is the fact that all the sensory cortices send their output to, and receive
feedback from, the enthorinal cortex (see Fig. 1).

This indicates that the enthorinal cortex is the place where perceptual in-
tegration is implemented. In support, Freeman notes that, by observing the
sensory cortices of rabbits trained in various sorts of conditioned input -light,
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Fig. 2. Sequencing of multisensory perceptions via the interaction of enthorinal cortex
and hippocampus

sound, touch— he was able to detect essentially the same dynamic behaviour
as he observed in the olfactory system. The implication is that all the sensory
systems use the same dynamics, and that, given this uniformity, the enthorinal
cortex could in principle integrate its various perceptual inputs into multisen-
sory perceptions or gestalts. Such a gestalt carries the meaning of a particular
stimulus for the organism.

It needs, furthermore, to be kept in mind that intentionality is sequential.
Individual sensory perceptions and integrated multisensory perceptions are em-
bedded in a dynamic process which implements the organism’s interaction with
the world in real time. There are two issues to be addressed here (see Fig. 2):

— Implementation of sequencing

The enthorinal cortex, which as we have just seen is proposed as the locus of
multiperceptual integration, sends most of its output to the hippocampus,



454 H. Moisl

and via feedback connections also receives most of the hippocampal output,
so that the two modules are in constant interaction. Now, the hippocampus
has been shown experimentally to be deeply involved in the orientation of
behaviour in space and time, which is what the intentional loop does. It is,
therefore, reasonable to infer that intentional space-time behaviour is im-
plemented in the sequencing of multisensory perceptions via the interaction
of enthorinal cortex and hippocampus. The EEGs generated by this inter-
action, moreover, show waveforms similar to those of the sensory cortices,
which suggests that here, too, dynamics like those of the olfactory cortex are
at work.
— Implementation of attention and expectation

Perception is an active process. Organisms do not simply respond to envi-
ronmental stimuli, but fix their attention on aspects of the environment and
have expectations of the environment for which they prepare. Attention and
expectation are implemented by feedback signals that modulate response to
the next sensory stimulus. For example, a multisensory perception in the
enthorinal cortex is fed back to the various sensory cortices, thereby pro-
viding an additional input which, together with the next external sensory
input, determines the cortices’ output. Response to sensory input is thus not
merely reactive, but is sensitive to the temporally prior context in which the
current input occurs.

3 Sequential NLU

We have seen that sequential string processing is sufficient for NLU in principle,
but that there are serious problems with it in practice. Freeman’s proposals on
how the brain implements intentionality and thus meaning both support the
principle of sequential processing and offer an attractive approach to dealing
with these problems. True, the proposals are based to a large extent on research
into the role of the limbic system in sensory processing the results of which,
when extrapolated to cognition more generally, are hypothetical and need to
be empirically tested to gain acceptance in the brain and cognitive sciences. As
noted in the Introduction, however, it is sufficient for NLU that they be plausible
enough to be worth investigating relative to the engineering problem in question
irrespective of their validity for brain function, and in my view they are. This
section therefore sketches the relevance of Freeman’s proposals to design of a
sequential NLU architecture.

3.1 Sequential Processing

Freeman identifies attractor trajectory in state space as the fundamental prin-
ciple of brain function at a level above that of the individual neuron. Each of
the modules in sensory processing subsequent to transduction is driven by input
through a sequence of attractors; there are no complex syntactic structures, only
cooperating sequential processes. If that view is correct, then, since the brain in
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fact implements language, sequentiality in this sense must be sufficient. Freeman
says little about language, and it may well turn out that, for this characteris-
tically human and thus exceptional cognitive function, the brain does indeed
use complex syntactic structure, in which case NJU would be well advised to
use it as well. In the meantime, Freeman provides good cause for investigating
sequentiality on its own.

3.2 Problems with Sequential NLU

Meaning Representation. However one understands ’meaning’, it seems un-
controversial to say that the meaning of linguistic expressions has something
to do with the way humans experience the material world. PSSH-based AI and
NLU systems have formalized this relationship as a mapping from strings to
states of the world, and have attempted to implement such mappings using
explicitly-designed, system-internal representations of real-world domains of dis-
course. How best to represent (aspects of) the world and beliefs about the world
is one of the main issues in PSSH-based Al, and a variety of formalisms for it
exist, as noted earlier. It was also noted earlier, however, that this approach
has only been moderately successful at best, and its relative lack of success is
what has motivated alternative approaches to semantic interpretation and im-
plementation over the last two decades or so, including the present one. The
main trend in these alternative approaches has been based on a growing con-
viction of the importance of evolution in understanding cognition and the brain
mechanisms that implement it [20] —that brains evolved as controllers for the
bodies of creatures which had to survive in specific environments, and that the
higher functions like language and reasoning are based on neural mechanisms
developed for this purpose. As a consequence, recent ’embodied, embedded’ cog-
nitive science and Al have been much more interested than the PSSH tradition
ever was in the interrelationship of mind, brain, body, and environment both as a
means of explaining cognition and as a way of implementing cognitive functions
(for example, [3,47,10,20,23,23,39,46,80]). With respect to meaning in particular
[20], it is clear that, notwithstanding the concentration on linguistic meaning
in the PSSH tradition, there is meaning apart from language —animals learn to
behave meaningfully relative to their environments, and so do human babies be-
fore they have acquired language— and the idea that such meaning is the basis’
for linguistic meaning is at least plausible enough to merit further investiga-
tion. Consonant with this general trend, there has been a movement in AI and
NLU away from attempting to map strings to explicitly designed representations
which, inevitably, reflect a designer’s analysis of what is significant in a task do-
main, and instead to relate language to system-internal states that are learned
from interaction with the world without designer intervention. At its most am-
bitious, this approach aims to embed NLU systems in robotic agents that not
only receive inputs from an environment via some combination of sensory trans-
ducers, but also interact with and change the environment by means of effectors.
The aim is for the agents to develop internal states based on self-organization
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with the environment —’Concepts are thus the ”system’s own”, and their mean-
ing is no longer parasitic on the concepts of others (the system designer)’ [28]-
and are intended to learn the meanings of linguistic expressions from their use
in environment-interactive situations.

Freeman’s work is part of this trend in that it uses self-organizing integration
of perceptions abstracted from sensory transducers as the mechanism of meaning
implementation. What singles it out is that the proposed mechanism is based
on empirical neuroscientific evidence; since the brain is the only mechanism
currently known to implement linguistic meaning, the sensible approach is to
attempt to mimic it.

Generation of (String, Meaning) Pair Lists. In Freeman’s architecture,
any given sensory input means the sequence of multisensory perceptions in whose
generation it has participated. This includes linguistically relevant acoustic in-
put sequences, and so, for a given string, there is a corresponding multisensory
perceptual sequence or, put another way, a (string, meaning) pair. Because the
architecture assumes availability of environmental inputs over time, there is no
need to compile a (string, meaning) pair list explicitly. Such a list generates itself
over time, as the system learns from its interactions with the environment.

Application to ANN-based NLU Design. Because Freeman is specific on
the biological neural mechanisms involved in the implementation of intention-
ality and meaning, it is possible to carry these mechanisms directly over into
ANN-based language engineering. Implementation of the architecture in Fig.
2 —including, crucially, the nonlinear dynamics among modules— involves a de-
parture from the way that most ANN-based NLP has been done over the past
decade or so [60], which, in essence, has been to implement explicitly-designed
input-output mappings using feedforward or recurrent multilayer perceptrons
and some variant of backpropagation. The required ANN architecture will have
at least the following features:

— Processing units that output pulse trains in nonlinear response to input, not
just numerical values which can be interpreted as representing an average fir-
ing rate as in currently-used ANN architectures, and that fire asynchronously
relative to one another.

— Modules that contain excitatory and inhibitory neurons whose interaction
generates oscillatory behaviour.

— Feedforward and feedback connection among modules to enable chaotic be-
haviour within the modules.

— An unsupervised, local learning mechanism such as the Hebbian to allow for
self-organization within modules.

Conclusion

Motivated by the lack of progress in broad-coverage natural language under-
standing systems based on the processing of complex syntactic structure, the
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foregoing discussion has proposed sequential processing as an alternative ap-
proach to implementation of string-to-meaning mapping. This is theoretically
justifiable, but has substantial practical problems associated with it. Freeman’s
work on the neural basis of intentionality and meaning both supports the princi-
ple of sequential processing for implementation of cognitive functions, including
language understanding, and also provides potential solutions to the associated
problems. As such, it constitutes an attractive basis for development of an ANN-
based NLU system.

Clearly, all this amounts to the merest sketch of a possible approach to NLU
design. On the one hand, as Freeman himself makes clear, the multisensory per-
ceptions that are synthesized and sequenced by the limbic system are a necessary
basis for the implementation of meaning, but not a sufficient one; full linguistic
meaning must involve processing of limbic output by the neocortex, and noth-
ing has been said about that here. On the other, none of the fundamental NLU
issues, such as the problem of string ambiguity and the roles of memory and
reasoning in linguistic comprehension, have been addressed. Whether or not a
sequential NLU system based on Freeman’s ideas will be able to deal with these
issues better than existing approaches, and perhaps succeed in general NLU,
remains to be seen.
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