5

Recurrent neural
networks and natural
language processing

HERMANN MOISL

5.1 Introduction

One of the many application areas of Artificial Neural Networks (ANNs) has
been natural language processing (NLP), and various ANN approaches to language
processing have been proposed (see Sharkey & Reilly (1992) for an overview
and recent work). This paper concentrates on one which has been prominent in
recent research: induction of language processing devices in synchronous recurrent
distributed ANNs by exposure to symbol string environments (Castano et al. 1993;
Elman 1990, 1991; Giles et al. 1990, 1991, 1992; Giles & Omlin 1993; Pollack
1991; Sanfeliu & Alquezar 1992; Servan-Schreiber et al. 1989, 1991; Sharkey &
Sharkey 1993; Watrous & Kuhn 1992). Such nets have yielded promising results
in language processing and in NLP more particularly, but there appears to be a
problem in principle which renders them inadequate for general NLP. In terms of
their architecture and string-processing dynamics these nets look very like strict
finite-state automata (FSAs), where “strict” refers to FSAs in which there is no
distinction between processor and memory (on which see, further, Schwarz 1992).

69

70 Recurrent neural networks and natural language processing

But one of the earliest and most enduring results in generative linguistics is that finite-
state devices are inadequate for generating natural languages, with the consequence
that the nets in question appear to be inadequate on theoretical grounds for NLP.
The general argument of this paper is that the theoretical problem is only apparent,
and that the adequacy of recurrent distributed nets for NLP is a purely empirical
issue. The discussion is in two main parts. The first considers and rejects standard
arguments against finite-state NLP, and the second sketches a general approach to
finite-state NLP using one particular kind of recurrent ANN: the simple recurrent
network (SRN).

5.2 Finite-state processing in NLP

NLP research has been and continues to be naturally associated with other disciplines
that concern themselves with the study of human language: theoretical linguistics
most obviously, but also the range of disciplines that come under the umbrella of
cognitive science, for which theoretical characterization of natural language is widely
seen as paradigmatic for understanding of cognition more generally. The argument of
this section is based on the assumption that the aims of NLP and of these associated
disciplines are fundamentally different. Mainstream linguistics and cognitive science
regard natural language as an abstract object, and aim to explain it by developing
maximally expressive and economical theories about it. NLP, on the other hand, is
concerned with the design and construction of physical devices to process physical
strings for some purpose. On the basis of this assumption, the current section argues
that the objections in principle to finite-state NLP stem from a failure to keep these
aims separate.

The more or less standard approach in non-ANN NLP, exemplified in Gazdar &
Mellish (1989), is to implement a physical device on the basis of some preferred
linguistic theory. That is, the grammatical categories, syntactic structures, and any
structure-manipulating devices such as movement rules of the linguistic theory are
incorporated into a language-processing algorithm, and that algorithm can then either
be directly physically realized or simuiated on a general-purpose computer. The result
is a physical device whose behaviour is both completely specified by the linguistic
theory and -as fully understood as the theory itself. Moreover, as a purely practical
matter, when simulation rather than direct realization is chosen — and it invariably
is — the construction of the NLP device becomes no more difficult than design and
coding of the algorithm: a compiler takes care of the rest. These are considerable
advantages, but the fact remains that direct instantiation of linguistic theories is not
a necessary approach to construction of NLP devices.

Given a physical system with an observable behaviour, what internal mechanisms
produce that behaviour? This is the identification problem, and the answer, in Arbib’s
words, is this:

Finite-state processing in NLP 71

Even if we know completely the function, or behavior, of a device, we cannot

deduce from this a unique structural description. . .. The process of going

from the behavior of a system to its structural description is then not to
be thought of as actually identifying the particular state variable form of the
system under study. It is, rather, that of identifying a state variable description

of a system that will yield the observed behavior, even though the mechanism

for generating that behavior may be different from that of the observed system.

(Arbib 1987: 38-9, emphasis original).

True, theoretical linguistics is concerned with natural language in the abstract,
not with the language behaviour of individual systems/humans, but the identification
problem nevertheless applies in that a class of systems is at issue: linguistic theory
is a structural description of the class of natural language speakers.

This applies straightforwardly to the present discussion. Assume some function,
say, a mapping from sentences to meanings. An NLP device realizes the function
by pairing physical sentence representations with physical meaning representations.
Such a device would be describable in terms of a processor which uses linguistic-
theoretic ontology even though it did not physically instantiate that ontology but
rather used some other mechanism. In other words, linguistic theory has no necessary
implications for the design of NLP processors. In principle, then, the way is open
for candidate NLP technologies, including devices: with finite-state architecture such
as recurrent ANNs. There are, however, some standard objections to finite-state
architectures for NLP, and these will now be dealt with in turn.

5.2.1 Unbounded-length centre-embedding strings

One of the aims of syntactic theory is to characterize the range of natural language
sentence structures as economically as possible without any necessary regard as
to how those characterizations might relate to production and understanding of
utterances by speakers in the real world. Some of these structures are characterized
as recursive; because it imposes no physical realization constraints, syntactic theory
permits an arbitrary depth of recursive embedding and consequently sentences of
unbounded length, which renders the language in question an infinite string set.
Now, Chomsky (1956) long ago demonstrated that finite-state devices are incapable
of generating or processing the language a"b", that is, a set of strings in which
some unbounded number of a given symbol a is followed by exactly the same
number of some other symbol b, where n is any positive integer. Since this
string pattern is attested in natural languages in what are analysed as recursive
centre-embedding structures, and since generative grammars do not specify limits
on recursive structures, any NLP device has to be able to deal with unbounded
centre-embedded strings. But this is impossible if the device is finite-state, and so
finite-state devices are inadequate for NLP.

If, however, one is concerned not with abstract characterization of natural
language but with constructing a physical NLP device, it is only necessary to consider
the string set which the device can be expected to encounter in practice rather than

72 Recurrent neural networks and natural language processing

the set it might encounter in principle. On that view, arguments against the finite-
stateness of natural languages simply do not apply. In the real world there is no
such thing as an arbitrarily deeply nested recursive structure, and no such thing as
a string of unbounded length. These things have finite limits, and, seen in terms
of what infinity is conventionally taken to mean, even the longest natural language
strings are really very short. The difference between the theoretical linguist’s and
the NLP researcher’s views of natural language comes down to this. A grammar
with recursion generates an infinite string set as long as there is no bound on the
application of that recursion. As soon as a bound is imposed the language which the
grammar generates becomes a finite subset of the one generated by the unbounded
version, which can be processed by a finite-state device (Hopcroft & Ullman 1979).
There is consequently no reason why a finite-state device should not process any
member of the class of natural languages.

None of this is new. Miller & Chomsky (1965: 464-83) recognized that the
human language processor had to be finite-state, and the inevitable finite-stateness
of physical NLP devices has since been generally accepted though rarely mentioned
and sometimes, it seems, forgotten. Despite this, strict finite-state architecture has
never, to my knowledge, been seriously entertained for NLP. The reasons for this
have to do with the second and third objections, to which we now turn.

5.2.2 Capturing generalizations

Strict finite-state architecture differs from that of higher-order automata in automata
theory in that the the higher-order ones have a processor-memory distinction
(Schwarz 1992). If a bound is placed on the memory of such a higher-order
device, it becomes functionally finite-state, that is, it can be simulated in terms
of input—output behaviour by a strict finite-state machine. The only difference is that
the two sorts of device use different algorithms to compute any given function on
account of their different architectures. Advocates of finite-state NLP have preferred
higher-order, bounded-memory architectures to the strict finite-state one explicitly
on account of the former’s explanatory advantage in relation to generative linguistic
theory (Chomsky 1956; Miller & Chomsky 1965; Church 1980; Pulman 1986).
If one’s aim is explanation, then clearly a higher-order automaton with bounded
memory is to be preferred. But the primary aim of NLP is construction of physical
devices, not explanation, so the choice between higher-order, bounded-memory and
strict finite-state architecture is in principle neutral.

5.2.3 Compositionality
Semantic theory in theoretical linguistics aims to associate linguistic expressions with
meanings, given some definition of “meaning”. This involves at least:

* assignation of meaning to the primitive expressions — the morphemes — of
a given language;

Finite-state processing in NLP 73

« specification of how the primitive expressions relate to composite expressions
— phrases and sentences — in that language;

* specification of how linguistic meaning relates to the world.

There are various approaches to these tasks; the one used for exemplification
here, formal or Montague semantics (Cann 1993), has been and continues to be
influential. Formal semantics defines the meaning of a sentence as its truth conditions:
a sentence means what the world would have to be like for the sentence to be true.
Truth conditions are defined relative to a “universe of discourse” which the semantic
theory models. Such a model has two main parts:

(a) The entities of the universe of discourse are identified, and the relationships
between these entities and the primitive expressions of the language, that is,
the denotations of the primitive expressions, are defined; and

(b) How the denotations of composite expressions are constructed from those of
primitive expressions is specified.

Part (b) is based on Frege’s principle of compositionality, which says that the
meaning of a composite expression is a function of the meanings of its component
primitives and their manner of combination, and is defined using a grammar which
both generates the sentences of the language in question, and associates a constituent
structure with each sentence. The connection between syntactic structure and meaning
is made by the rule-to-rule hypothesis, in which each syntactic rule is associated with
a corresponding semantic rule which specifies the meaning of a composite expression
in terms of its immediate syntactic constituents. In this way, syntax can be said to
drive semantics in the sense that, given the meanings of the morphemes of a language,
syntactic structure determines what sentences mean.

Compositionality has also been at the centre of a long-running debate in the
cognitive science community, where the rival claims of an established “classical”
approach to the study of cognition and those of the “connectionist” challenger are
at stake (for recent discussion and extensive references see Dinsmore (1992) and
Volume 4 of Connection Science). The classical position, forcefully put by Fodor
& Pylyshyn (1988), is that, in order adequately to explain certain fundamental
aspects of cognition, one requires the notion of the structured representation, that
is, of a mental object consisting of primitive symbols arranged in a constituent
structure with compositional semantics, and the notion of mental processes which
interpret representations in a way that is sensitive to their structure; because they
are by nature finite-state devices, ANNs cannot articulate or process representations
with a constituent structure adequate for capturing the requisite generalizations
about cognition. In response, connectionist cognitive scientists have worked to
vindicate ANNs as a suitable alternative paradigm for cognitive theorizing by
developing specifically connectionist accounts of compositionality, chief among them
Smolensky’s (1990) tensor product representation and van Gelder’s (1990) functional
compositionality, which is based on temporal rather than spatial structuring of
constituents. Functional compositionality is exemplified in Pollack’s (1990) RAAM
architecture, and applied to NLP by Chalmers (1990) and Blank et al. (1992).

74 Recurrent neural networks and natural language processing

Central to both theoretical linguistics and cognitive science, then, is the idea
of semantic interpretation of an expression on the basis of its syntactic structure.
Now, it is universally agreed that natural language sentences have complex and
varied structures. How, therefore, can a finite-state architecture which imposes a
single, strictly sequential syntax on sentences be adequate for natural language
semantics? The classicists in the cognitive science debate think that it cannot, and
the connectionsts agree in that they found it necessary to develop compositional
representational methods for ANNS. Nevertheless, I claim that compositionality
has no necessary implications for NLP. The basis for this claim is, again, that
explanation is one thing, and construction of physical devices another. Compositional
semantics in natural language sentences depends crucially on the attribution of
more or less complex syntactic structure to sentences. But sentences are abstract
objects, and so are the structures attributed to them: both are artefacts of linguistic
theory. Physical strings, whether spoken or written, have no structure apart from
strict temporal or spatial sequence. One approach to implementing a sentence-to-
meaning function is to map strings onto abstract sentences with abstract structures
and to process these sentences in accordance with those structures, which yields a
processor that is perspicuously related to linguistic theory as well as to structured
meaning representations, but the identification problem says that this is not necessary.
Since, for NLP, it suffices that the sentence-to-meaning function be realized by a
device which pairs strings with physical meaning representations, another legitimate
approach is to attempt to process strings in accordance with the structure we know
for certain they have — strict sequence — using a processor with strict finite-state
architecture.

5.3 Recurrent ANNs and NLP

Assuming the validity of the arguments in the preceding part of the discussion, the
way is clear for development of an approach to NLP based on strict finite-state
architecture. But, as the Celtic chieftain Calgacus is reputed to have said of the
Roman invasion of Britain: “They made a desert and called it peace” (Tacitus,
Agricola). Notions of complex phrase structure and associated compositional
semantics provide intuitively accessible and theoretically well-developed ways of
thinking about language and offer a basis for the design of NLP devices via
the relationship between linguistics and computation which formal language and
automata theory define. If one dispenses with these notions in NLP design, what
will replace them? This section sketches a proposal for an alternative.

It is best to be clear at the outset that generative linguistic theory is not being
challenged: for present purposes it is accepted as a characterization of what has
traditionally been called “human linguistic competence”. The issue is the relationship
between linguistic theory and the physical processing mechanisms required for

Recurrent ANNs and NLP 75

NLP, and the argument is, in essence, that physical instantiation of computational
architectures with the processor-memory distinction (Schwarz 1992) is unnecessary.

Generative linguistic theory defines a function from linguistic expressions —
words, phrases, sentences — to meanings, given some definition of “meaning”.
An NLP device implements this function if, given a physical representation of an
expression, it returns a physical representation of the associated meaning. Since
natural languages are finite sets for NLP purposes, it becomes possible to define the
function as a list of <expression, meaning> pairs, and for an NLP device to do nothing
more than table lookup on a physical representation of the list. The proposal is to
train a recurrent ANN with strict finite-state architecture to implement such a table
lookup device. The discussion is in three parts: Section 5.3.1 designs a computer
simulation of an ANN to associate strings with meaning representations; Section
5.3.2 presents test results and analysis of that ANN; and 5.3.3 briefly addresses some
issues which arise from Sections 5.3.1 and 5.3.2.

5.3.1 Network design and implementation

The aim is to implement a mapping from linguistic expressions to meanings, given
a finite set of expressions. This requires pairing of each expression of length 1
with a meaning, each expression of length 2 with a meaning, and so on up to some
maximum length, as in Figure 5.1. Here, meanings are labelled “1”, “2”, “3”, ... ;
the expression the means “1”, the man means “2”, the man in means “3”, and so on.

Meanings
1 2 3 4 5 6
the
the | man
Strings the | man in
the | man in the
the | man in the | tent
the | man in the | tent | slept

Figure 5.1 String-to-meaning mapping.

In view of the number of words in English and of the possible combinations of
words up to some reasonable maximum sentence length, this approach may appear
to require a very large number of meanings, but in fact there are exactly as many
as that which generative linguistic theory would posit for the same expression set.
Linguistic theory would generate the meanings more elegantly than an explicit listing
by building them out of the meaning primitives assigned to morphemes, but elegance
is not an issue here.

76 Recurrent neural networks and natural language processing

Like much of the grammatical induction work mentioned in Section 5.1, the
net used to implement this mapping is a simple recurrent network (SRN), a
discrete-time dynamical system whose architecture and processing dynamics make it
straightforwardly interpretable as a finite-state automaton (for example, Arbib 1987:
24-6), as in Figure 5.2.

Meaning

Strings ’
representations

Figure 5.2 SRN implementation of string-to-meaning mapping.

The set of hidden-layer configurations is the state set. The connections between
the input and hidden layers are the next-state function in that, for every combination
of current input and current state, they generate a characteristic associated next state
in the hidden layer. The connections between hidden and output layers are the output
function in that, for every state of the hidden layer, they generate a characteristic
output in the output layer.

The SRN is in principle a physical device with physical input and output signals,
but as with virtually all ANN research practice, it is simulated on a conventional
computer. The linguistic expressions and meanings, which are in principle to be
represented physically, in fact need to be given a representation appropriate to the
simulation. This means numerical vectors whose components represent features of
the physical input and output signals. The frequently used “one-hot” encoding is
adopted here, where each distinct input and output from the net is assigned a unique
binary-valued vector in which one component is “1” and all the rest are “0”. This
is unrealistic for actual NLP work, where one would want to represent features of
acoustic or visual input in some detail, but it suffices for present purposes. The
result is a list of <binary-valued vector sequence, binary-valued vector> pairs which
represent the linguistic <expression, meaning> pairs of the mapping.

The SRN is trained by repeated random selection of a pair from the list, and
presentation of that pair to the net so that it can learn to associate the components
using back-propagation; this continues until the learning error curve stops decreasing
significantly. For example, training the net on the list in Figure 5.1 would proceed
as follows:

Recurrent ANNs and NLP 77

1. Choose a pair, say <the, 1>: the vector representation of the is presented to
the designated units in the first layer of the net, the vector representation of
“1” becomes the target output, and back-propagation is applied.

2. Choose another, say <the man, 2>: the vector representation of the becomes
the input and the vector representation of “1” the target output, then the vector
representation of man becomes the input and the vector representation of “2”
the target output, applying back-propagation in each case.

3. Similarly, for <the man in, 3>, the is associated with “1”, man is associated
with “2”, and in with “3”.

In this way, the net learns a mapping from strings to meanings: in all the Figure 5.1
strings the means “1”, in strings 2—6 the man means ‘“2”, in strings 3—6 the man in
means “3”, and so on up to the man in the tent slept, which means “6”.

5.3.2 Results and analysis

Results

The simulation was trained and tested on sets of up to 24 strings of maximum length
12, all of them of the declarative variety, such as (1), and learned the string—meaning
function perfectly.

(1) The cat with the long tail sat on the mat.
Special attention was paid to the net’s ability to handle long-distance dependencies,
since this is always an issue in NLP research and has often — though erroneously
- been regarded as a problem for finite-state processors. The net had no difficulty
with maintaining dependencies across the distances so far required of it, (2)—(3), or
the centre-embedding (4).

(2) The man in the boat by the shore sees.

(3) The men in the boat by the shore see.

(4) The car the man the woman loves drove stopped.

Analysis

For an SRN with n units in its hidden layer, the values which those units assume at
any processing step constitute an n-component vector. Each such vector defines a
point in n-space. For a test string of length a there are a hidden-layer configurations,
and for b test strings there are c¢ configurations as given in (5).

® =YY%

1..b1...a

In the grammatical inference research mentioned in Section 5.1, it is usual to carry
out a cluster analysis of these ¢ vectors in order to gain some insight into network
operation. These analyses have shown that the points are not in general haphazardly

78 Recurrent neural networks and natural language processing

distributed in n-space, but cluster in regions of that space such that all the hidden-
layer vectors which generate a given output are adjacent. Such clusters are usually
interpreted as states of a finite-state machine which the net has inferred from string
input, but this is an unnecessary abstraction. The component vectors of a cluster
typically differ from one another to greater or lesser degrees, and an alternative
interpretation, adopted here, is to assign a separate state to each distinct hidden-layer
configuration. This results in a much larger finite-state machine for a given function,
but corresponds more directly to physical reality.

The hidden-layer configurations which the trained net assumed in the course of
string processing in the results reported above were subjected to cluster analysis,
and the results were unsurprising: the hidden-layer vectors clustered in accordance
with the target output, as above. Assuming, however, a separate state for every
distinct vector, the analysis shows that there is a unique state for every <expression,
meaning> pair. Thus, for the three strings (6)—(8), the state sequences for initial the
and for man are identical in all three cases; thereafter (6) and (7)—(8) bifurcate, and
(7)—(8) continue with identical state sequences for in the restaurant ate, at which
point they too bifurcate; ate his lunch in (6) and (7), though lexically identical, have
different state sequences; there are three distinct states for lunch.

(6) The man ate his lunch.
(7) The man in the restaurant ate his lunch.
(8) The man in the restaurant ate a sparing lunch.

By following the trajectory which each string generates in the state space, one can
see that the net learns a distinct state sequence for every distinct string.

5.3.3 Discussion

Whether or not the approach proposed in Section 5.3.1 will be practicable, and what
sorts of development are required, are empirical matters. At least two issues arise at
this stage, however, both of them having to do with the assumed prior existence of
an <expression, meaning> list and of a corresponding physical representation of it:

(a) Though theoretically possible on the grounds of finiteness, construction of
an <expression, meaning> list for some natural language would be a huge
and almost certainly infeasible task.

(b) Linguistic expressions and meanings are abstractions, and compilation of a
list implies some physical representation scheme. Representation of linguistic
expressions is well understood, but it is not at all clear what a physical
representation of a meaning might look like; in the foregoing discussion
“meaning representations” were simply variables instantiated by arbitrary
vectors for the sake of argument.

Despite its theoretical validity, the architecture proposed in Section 5.3.1 emerges
as impractical in the light of (a) and (b). The following development of that archi-
tecture is intended to address this. An increasingly favoured idea in connectionist
research is that ANN-based systems be “hooked up” to the world with a range of

Recurrent ANNs and NLP 79

sensors which transduce physical signals into a format amenable to ANN processing,
thus providing input representations which relate to environmental regularities in a
systematic way and thereby, it is hoped, allowing nets to behave in ways interpretable
as semantically coherent (e.g. Peschl 1992; Pfeifer & Verschure 1992; Plunkett et
al. 1992). The development of the NLP approach being proposed here is based on
this idea (Fig. 5.3).

acoustic L>ﬁ = DJ‘ =< [] 1

signal e

=0 = [=02

s B0 = Oy <0
g

Figure 5.3 Interconnected finite-state automata.

The acoustic and visual components are the input sensors. Input to both is via
Kohonen nets (represented by grids) which function as transducers from physical
signals to 2-D topographic maps. In the acoustic component the map is input to
an SRN which processes sequences of maps corresponding to time-sliced acoustic
inputs. In the visual component the map of some visually perceived state of the
world is input to a feed-forward ANN; this model takes no account of real-world
dynamics at present, and an SRN is consequently not required. Between these two
components is a feed-forward net (“link net”) whose input layer is the hidden layer of
the acoustic sequence processor, whose target output is the hidden layer of the visual
processor, and whose hidden layer represents the association of the two. Training
assumes sources of acoustic and visual input such that the two sorts of input would
be perceived by a human observer as naturally related: (9) would be correlated with a
state of the world in which a cat is sitting on a mat, and not with a crane lifting bricks.

(9) The cat sat on the mat.

This addresses (a) and (b) above as follows:

(a) Given an appropriate physical environment, the net learns to implement the
expression-to-meaning function on-line and incrementally. There is no need
to predefine an <expression, meaning> list.

(b) The net generates its own representations: expression representations are
abstracted from acoustic input in the hidden layer of the acoustic SRN, and
meaning representations develop in the link-ANN hidden layer in the course
of training; the intention is that, at any stage of acoustic input, the link-net
hidden layer should represent the meaning of the string up to that point,

80 Recurrent neural networks and natural language processing

where “meaning” is understood in an impoverished sense appropriate to the
restricted range of inputs.

5.4 Conclusion

This paper has argued that pessimistic assessments of the adequacy of recurrent ANNs
for NLP on the grounds that they have a finite-state architecture are unjustified,
and that their adequacy in this regard is an empirical issue. Whether or not
the model can be developed for general NLP remains to be seen, but even as it
stands it exemplifies the kind of radical departure from linguistics-based NLP that is
possible once the supposed theoretical obstacles to finite-state NLP are removed. In
particular, it departs from linguistics-based NLP in making no use of any syntactic or
compositional structure beyond the purely sequential, and amounts to table-lookup
mapping from strings to meaning representations.

References

Arbib, M. 1987. Brains, machines, and mathematics, 2nd edn. New York: Springer.

Blank, D., L. Meeden & J. Marshall 1992. Exploring the symbolic/subsymbolic
continuum: a case study of RAAM. In The symbolic and connectionist
paradigms: closing the gap, J. Dinsmore (ed.), 113-48. Hillsdale, NJ: Lawrence
Erlbaum.

Cann, R. 1993. Formal semantics: an introduction. Cambridge: Cambridge Univer-
sity Press.

Castano, M., E. Vidal & F. Casacumberta 1993. Inference of stochastic regular
languages through simple recurrent networks. In Lucas (1993), 16/1-6.

Chalmers, D. 1990. Syntactic transformations on distributed representations. Con-
nection Science 2, 53-62.

Chomsky, N. 1956. Three models for the description of language. IRE Transactions
on Information Theory IT-2, 109.

Church, K. 1980. On memory limitations in natural language processing. Technical
Report LCS/TR-45, Department of Electrical Engineering and Computer Science,
MIT.

Dinsmore, J. 1992. The symbolic and connectionist paradigms: closing the gap.
Hillsdale, NJ: Lawrence Erlbaum.

Elman, J. 1990. Finding structure in time. Cognitive Science 14, 179-211.

Elman, J. 1991. Distributed representation, simple recurrent networks, and gram-
matical structure. Machine Learning 7, 195-225.

Fodor, J. & Z. Pylyshyn 1988. Connectionism and cognitive science: a critical
analysis. Cognition 28, 3-71.

References 81

Gazdar, G. & C. Mellish 1989. Natural language processing in LISP. Wokingham,
England: Addison-Wesley.

Giles, C. & C. Omlin 1993. Extraction, insertion, and refinement of symbolic rules
in dynamically driven recurrent neural networks. Connection Science 5, 307-38.

Giles, C., G. Sun, Y. Lee & D. Chen 1990. Higher order recurrent networks
and grammatical inference. In Advances in neural infromation systems 2, D.
Touretzky (ed.), 380-7. San Mateo, Calif.: Morgan Kaufmann.

Giles, C., D. Chen, C. Miller, H. Chen, G. Sun & Y. Lee 1991. Grammatical
inference using second-order recurrent neural networks. In Proceedings of the
International Joint Conference on Neural Networks, IEEE 91, Seattle, Wash.,
Vol. 11, 273-81.

Giles, C., C. Miller, D. Chen, G. Sun, H. Chen & Y. Lee 1992. Extracting and
learning an unknown grammar with recurrent neural networks. In Advances in
neural information processing systems, J. Moody, S. Hanson & R. Lippmann
(eds), 363—71. San Mateo, Calif.: Morgan Kaufmann.

Hopcroft, J., & J. Ullman 1979. Introduction to automata theory, languages, and
computation. Reading, Mass.: Addison-Wesley.

Lucas, S. (ed.) 1993. Grammatical inference: theory, applications, and alternatives.
London: IEE.

Miller, G. & N. Chomsky 1965. Finitary models of language users. In Readings
in mathematical psychology II, R. Bush, E. Galanter & D. Luce (eds), 156-71.
New York: John Wiley.

Peschl, M. 1992. Construction, representation, and the embodiment of knowledge,
meaning, and symbols in neural structures. Connection Science 4, 327-38.

Pfeifer, R. & P. Verschure 1992. Beyond rationalism: symbols, patterns, and
behaviour. Connection Science 4, 313-25.

Plunkett, K., C. Sinha, M. Moeller & O. Strandsby 1992. Symbol grounding or the
emergence of symbols? Connection Science 4, 293-312.

Pollack, J. 1990. Recursive distributed representations. Artificial Intelligence 46,
77-105.

Pollack, J. 1991. The induction of dynamical recognizers. Machine Learning 7,
123-48.

Pulman, S. 1986. Grammars, parsers, and memory limitations. Language and
Cognitive Processes 1, 197-225.

Sanfeliu, A. & R. Alquezar 1992. Understanding neural networks for grammatical
inference and recognition. In Advances in structural and syntactic pattern
recognition, H. Bunke (ed.), 75-98. Singapore: World Scientific.

Schwarz, G. 1992. Connectionism, processing, memory. Connection Science 4,
207-26.

Servan-Schreiber, D., A. Cleeremans & J. McClelland 1989. Learning sequential
structure in simple recurrent networks. In Advances in neural information

processing systems 1, D. Touretzky (ed.), 643-52. San Mateo, Calif.: Morgan
Kaufmann.

82 Recurrent neural networks and natural language processing

Servan-Schreiber, D., A. Cleeremans & J. McClelland 1991. Graded state machines:
the representation of temporal contingencies in simple recurrent networks.
Machine Learning 7, 161-93.

Sharkey, A. & N. Sharkey 1993. Connectionism and natural language. In Lucas
(1993), 20/1-10.

Sharkey, N., & R. Reilly 1992. Connectionist approaches to natural language
processing. Hillsdale, NJ: Lawrence Erlbaum.

Smolensky, P. 1990. Tensor product variable binding and the representation of
symbolic structures in connectionist systems. Artificial Intelligence 46, 159-216.

van Gelder, T. 1990. Compositionality: a connectionist variation on a classical
theme. Cognitive Science 14, 355-84.

Watrous, R. & G. Kuhn 1992. Induction of finite state languages using second-order
recurrent networks. Neural Computation 4, 406-14.

