ARTIFICIAL NEURAL NETWORKS AND NATURAL
LANGUAGE PROCESSING

Introduction

An artificial neural network (ANN) is a type of computer that differs in important
ways from the conventional computers to which the world has become accustomed.
Since the mid-1980s there has been a rapid growth of interest in ANNSs as an adjunct or
indeed alternative to conventional computers in research areas in which computation
is an essential factor, and natural language processing (NLP) is one of these. This
discussion is concerned with the theory and practice of processing natural language
with ANNS.

To motivate the discussion, some comments about the relevance of NLP to library
and information science and about the implications of ANN technology in NLP need
to be made at the outset. The essence of that relevance is simply this: given the self-
evident observation that humans communicate most easily and effectively with one
another using natural languages such as English, it follows that natural language is in
principle the easiest and most effective way for humans to access a computer’s
information base. The aim of NLP research generally is to configure computers in
such a way as to endow them with the facility for natural language communication.
The standard way in which the task is conceptualized is as a sequence of steps
something like the following:

1. The NLP device receives some physical signal as input, most often sound in spoken
communication or light when reading, and, because computers cannot process sound or
light, translates the signal into a form amenable to processing. This translation is referred
to as transduction .

2. The NLP device interprets the linguistic meaning of the transduced input.

3. This meaning is related in the appropriate way to the NLP device’s information base. If
the input was simply declarative, then its informational content is added to the informa-

tion base.

4. If, on the other hand, a response is called for, then the response is framed as linguistic
meaning.

5. That meaning is the transduced into a physical output signal that a listener or a reader
perceives.
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At its most ambitious, such research aims to design and build the linguistic
component of artificially intelligent systems that are capable of using language as
humans do. The computer HAL in 2001: A Space Odyssey—human in the sense of
being motivated by human emotions and concerns and of having a perfect mastery of
English, but computerlike in its nearly instantaneous access to an information base
vastly superior to that of the crew members—is archetypal and, for the information
scientist, the ideal. The construction of HAL-like systems has, however, proven
extremely difficult and is nowhere nedr being achieved, but approximations to them
are more tractable as a technology in library and information science applications.
More particularly, NLP systems can be used as “front ends” that allow natural
language access to domain-specific information processing systems. The main prob-
lem in constructing fully intelligent systems is that in order to behave like humans (at
least linguistically) they would have to have access to a human’s knowledge of the
world as described in step (3) above, and would have to frame the meaning of inputs
and outputs—that is, their semantics—in terms of that knowledge (steps (2) and (4)).
This raises profound philosophical as well as practical problems of what knowledge
should actually be stored and how it should be represented, and the vastness of the
- undertaking has so far defeated all attempts. But if one is prepared to restrict the
computer’s information base to a specific subject domain—a typical library catalogue
database, for example—the semantics of a system’s inputs and outputs are radically
simplified because the nature and structure of the information is known, which in turn
renders natural language input and output to and from information systems a
tractable, through nontrivial, application area.

So far, we have been concerned with NLP in general. What are the advantages of
using ANN over conventional technology in NLP? Research in the field is insuffi-
ciently well developed to permit a full and relatively uncontroversial answer, but there
appears to be general agreement, at least among proponents of ANNSs, that such
advantages as ANNs offer for NLP are primarily attributable to the following
differences from conventional computer technology:

* Conventional computer architecture is based on the idea of a single processor manipulating
a separate memory in which the relevant data are stored, whereas ANN architecture is
based on more or less numerous interconnected processors without a separate memory.

* Conventional computers are explicitly programmed to realize abstractly defined algorithms
for carrying out computational tasks, whereas ANNs are not programmed but rather learn
to carry out computational tasks from exposure to an environment.

A major advantage these features offer is that ANN NLP systems are more resilient
in the face of unexpected or damaged input than the corresponding conventional
ones. Real-world linguistic usage is often far removed from the idealizations of
linguistic theory, and because conventional NLP systems are explicitly programmed,
the designer has to work with an eye not only to the theory but also to all the possible
corruptions—background noise, incomplete sentences, grammatically incorrect
usage, and so on—that his or her system might encounter in practice. But, the world
being what it is, the task of foreseeing all eventualities is difficult if not impossible, and
if the system encounters something for which it has not been programmed, it will fail,
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perhaps catastrophically. This is known in the literature as the “brittleness” of
conventional NLP systems. The corresponding ANN system, however, is resilient
under the same circumstances: if the corruption is minor it will compensate and
continue, if the corruption is severe it will fail, and in between it will give a continu-
ously graded response. This is known in the literature as “graceful degradation,” and
can be exploited directly in library and information science NLP applications to
compensate for the vagaries of user input. Rather more speculatively, ANN systems
have the advantage of designing themselves by virtue of being able to learn from an
environment. The designer of a conventional NLP system has to have theories that he
or she can implement on a computer: a theory about the formal structure of the
relevant language, a theory about the semantics of that language, and a theory of
knowledge representation. But theories can be wrong. The designer of an ANN NLP
system, on the other hand, need not make use of preexisting theories, but can leave it
to his or her network to infer what is necessary from the environment in order for it to
carry out the desired computational task. True, this is easier said than done, but
research along these lines is currently in hand. One might, moreover, justly object that
this “design by inductive inference” approach is superfluous for such straightforward
applications as the library catalogue database referred to earlier, but it comes into its
own in domains in which the structure of the information is less obvious, such as expert
systems applications involving “fuzzy” reasoning.

Having briefly outlined its relevance to library and information science, we return to
the theory and practice of NLP using ANNs. One possible approach would be to
present a survey of recent work in ANN NLP, but given both the space constraints on
this discussion and the current level of research interest in the subject, that would
amount to little more than a series of brief sketches incomprehensible to anyone but
the specialist. The alternative is to attempt a coherent account of some fundamental
issues in NLP, and of interesting ANN approaches to them. The drawback here is, of
course, that “fundamental” and “interesting” are subjective notions, and that much
will be missed because it does not fit into the chosen framework. The second approach
nevertheless seems preferable in terms of tractability and clarity, and is adopted here;
for a recent collection of ANN NLP work with extensive further references see Ref. 7.

The rest of this introduction defines the scope and outlines the structure of the
discussion.

SCOPE

The following restrictions on the scope of this discussion are motivated mainly by
the need to compress a large subject into a small space: ‘

o
1. There are two broad approaches in NLP generally, which for convenience are here
referred to as cognitive NLP and engineering NLP, respectively. As its name suggests,
cognitive NLP is closely associated with cognitive science, a discipline that has emerged
fairly recently as an amalgam of selected elements from psychology, linguistics, computer
science, artificial intelligence, neurophysiology, and philosophy, and the aim of which is
to develop a comprehensive theory of human cognition. Natural language has been and
continues to be a primary focus because it epitomizes the class of “higher functions” in
which cognitive scientists have had a particular interest. Linguistics in the Chomskyan
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tradition, in particular, is concerned with developing a theory of the human mind’s
language faculty, and an influential view of the nature of cognition is that there is a
“language of thought” analogous in terms of syntax and semantics to natural languages.
Cognitive NLP bases its models on such cognitive theories and then implements them
with a view to building devices that process language as humans do. Engineering NLP, on
the other hand, has no commitment to cognitive theorizing. Its aim is to design devices
that process natural language in relation to some specified criterion, but it is neutral on
the issues of whether or not such devices process language as humans do.

Both approaches are legitimate. Choosing between them depends on what one hopes
to achieve. If the primary aim is to understand and model the linguistic aspect of
cognition, then cognitive NLP is appropriate. Otherwise, the obvious choice is engineer-
ing NLP, simply because one does not have to make and substantiate claims about human
cognition. Cognitive NLP is by far the more ambitious for the two, and for most
researchers, by far the more interesting. But it is also very much more complicated. It
raises a host of difficult and often controversial philosophical, metatheoretical, and
methodological issues that, in order to be understood, together presuppose at least a
basic background in several of the disciplines that constitute cognitive science. One
cannot hope to address these issues properly within the confines of a relatively short
discussion such as this one and still deal adequately with the practicalities of current ANN
NLP techniques. This discussion therefore dispenses with the cognitive dimension of
NLP, and adopts an engineering NLP orientation; a useful way into the literature on the
interrelationships of cognition, NLP, and ANNS are the articles in Dinsmore (2), which
represent the mainstream of current thought on the subject and contain extensive further
references.

Natural language communication is in spoken or written form. For any given task,
processing speech is more difficult than processing text. The reason has to do with the
ease with which linguistically significant input can be presented to the processing device.
Text is straightforward. There is a small set of symbols—the alphabet, punctuation,
space—from which words and sentences can be constructed: a word is a sequence of
letters, words are clearly separated from one another by spaces, phrases are often
demarcated by commas, and sentences are demarcated by full stops. As an added bonus,
text is usually grammatically correct and complete; few people write consistently and
grossly erroneous text or leave sentences incomplete. Representing text is moreover as
simple as typing at a computer keyboard, which, translates it into the equally explicit
corresponding ASCII representation, which can in turn be used by the NLP processor.
Speech, on the other hand, is anything but straightforward. The physical acoustic signal
corresponding to written text does not consist of a few canonical elements. For any given
linguistically significant element, the acoustic realization in the individual speaker will
vary constantly in accordance with factors such as the acoustic context in which it occurs
and the speed of articulation. Each speaker has his or her own characteristic acoustic
realization, and the shape of the signal is affected to varying degrees by noise in the
speaker’s environment. Speech is, moreover, continuous; words are not neatly separated
one from another as in text, nor are sentences consistently demarcated by, for example,
pauses. And, on top of everything else, spoken language is full of ungrammatical and
incomplete sentences. Much research has been and is being devoted to the question of
how humans manage to extract linguistically significant regularities from so variable and

_frequently degraded a speech sfgnal, but even from a purely engineering standpoint the

problem is not trivial and is far from being solved. This discussion does not cover speech
processing, mainly because it is an area about which I do not know enough to be able to
say anything useful. It assumes text input, and concentrates on syntactic and semantic
processing of natural language.

Various network architectures and associated learning rules have been and are being
developed (3), and there is no hope of being able to cover them adequately here. The
procedure is, rather, to choose one particular architecture that is both widely used in
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ANN/'NLP research, and intuitively accessible. This is of course means that ANN NLP
work that uses other architectures will not be covered, but that drawback is in my view
balanced by greater clarity in what is, after all, an introduction to the subject.

4. The emphasis is on fairly recent research, that is, work that has appeared within the last
five years or so. The earlier work and its implications have by now been digested by
researchers; a brief history is available in Ref. 7.

5. One can’t know everything. Inevitably, the coverage presented here reflects the range of
my reading and general competence, and cannot therefore claim to be fully comprehen-
sive even within the limits stated above. .

STRUCTURE

The processing of natural language using conventional computers (henceforth
“conventional NLP”") has been a research subject for about three decades, during
which time a substantial corpus of theoretical and practical results has been generated.
Because it brings a different technology to bear, ANN NLP can be expected to diverge
more or less radically from conventional NLP, and this is already happening, as we
shall see. It remains, however, that conventional NLP offers many insights into the
nature of the problem, and it would be unwise of ANN NLP simply to disregard it; at
the very least, ANN NLP has to show how it proposes to address fundamental issues
that the conventional variety has identified, and most of current ANN NLP work does
in fact make explicit or—via the conceptual framework within which it understands
language—implicit reference to these issues. To understand ANN NLP and the
associated research literature properly, in short, one first has to know something of
conventional NLP.

Once again, scale is an obstacle; a résumé of three decades’ work is simply out of the
question here. It is, however, possible to convey the requisite awareness of the
fundamental issues comparatively briefly. The first part of the discussion “Fundamen-
tals of Language Processing” will do this under four headings: (1) formal language
theory, (2) automata theory (3) semantic theory, and (4) representation. The rest of
the discussion will then make appropriate reference to it.

Fundamentals of Language Processing

Formal languages theory provides a general definition of the notion of language
that subsumes the natural languages, together with the means of generating languages
with expressions having varying degrees of structural complexity. Automata theory
defines abstract machines capable of processing the various structural complexity
classes so generated. Semantic theory deals with how languages mean. And, finally,
representation is concerned with how the abstract entities proposed by these various
theories can be given a form amenable to processing by actual computers. We will look
briefly at each of these.

FORMAL LANGUAGE THEORY

The standard textbook on formal language theory is that of Hopcroft and Ullman
(4), although various others are available.



ARTIFICIAL NEURAL NETWORKS 6

Symbols

The notion of symbol is fundamental to formal language theory (FLT). A symbol in
this context is simply some physical thing that is interpretable as referring to some-
thing, which doesn’t exclude much; it is standard practice to use the Roman alphabet
or some subset of it. Two important things to note about symbols are

* Symbols are primitive; that is, they cannot be decomposed into constituent parts. If one
defines the Roman alphabet {a...z} as the symbols to be used, then it makes no sense to
decompose, say, a d into a loop and an ascender and then to attempt to use these two
elements in subsequent language generation; “loop” and “ascender” are not part of the
defined symbol set to be the lexicon of English. By that definition, English words would no
longer be composed of individual letters because symbols are not decomposable; the
complete physical shape aardvark is the symbol, not its constituent letters.

Symbols are arbitrary relative to what they represent; anything can stand for anything else
as long as everyone concerned knows the connection. Natural languages are an eloquent
example of this since, excluding historical cognates and coincidence, they use different
words to designate the same real-word entities: English woman, German Frau, Irish ben.

Strings

Having defined a set of symbols, it is possible to concatenate them so as to form
sequences called strings . Given the symbol set {a, b, ¢ }, one can form the strings 4, b, c,
aa, abc, aaac, abbbbbccce, and so on. Intuitively, the number of strings that can be
formed in this way seems very large. In fact, given only that no upper limit is placed on
permissible length, an infinite number of strings can be formed from any nonempty
symbol set one cares to define. Assuming a symbol set that, for convenience, we will
label A, the set of all possible strings composed of the symbols in that set is designated
as A*.

Languages

Given some symbol set A, a language over A* is some (itself possibly infinite) subset
of A*. Assume A = the English lexicon. Then A* would include all English sentences,
and a great deal of gibberish besides: John drove his car, but also car drove his John,
John his, his his his his his his his, and so on. Clearly, the English language consists of
some but will not all of the strings formed by concatenating the contents of the
lexicon—that is, it is a subset of A*.

Grammars

The question is: how can the desired set of strings be chosen from A* so as to define
a language? One possibility is sfmply to list them, but since subsets of an infinite set
may themselves be infinite, it is not a viable one; the list would never be complete. The
alternative is to give a finite specification for an infinite set, some (relatively) brief
description of what characteristics a string must have in order to be admitted to the
desired language. Such a specification is called a grammar. More particularly, a
grammar gives an exhaustive list of rules for forming the strings a language; it is said to
generate a language.
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Grammars in FLT are phrase structure grammars, so called because they generate
strings by building them up out of substrings called phrases. The notion of phrase has
an intuitive basis in natural languages. In English, for example, one feels that the
sequences of words that make up sentences come in clumps. Sequences such as on the
beach, behind the red car, and in sight share a common pattern—preposition +
optional determiner + optional adjective(s) + noun—and constitute a prepositional
phrase; a typical noun phrase pattern is optional is optional determiner + optional
determiner + optional adjective(s) + noun.(horses, the man, a sad tale). Individual
words combine to form phrases, and phrases combine to form more complex phrases
(i.e., noun phrase + prepositional phrase: the man behind the red car) or, ultimately, a
complete sentence. A phrase structure grammar is essentially just a set of rules for
combining words into phrases, and phrases into more complex phrases and/or sen-
tences. Such rules are succinctly stated in the form of productions. For example

1.S - NP VP
2.NP - DETN
3.NP >N
4.N — man | dog | cat
5.DET — the | a
6. VP - V NP
7. VP >V
8.V — bites | catches

Here word categories and phrase types are represented by symbols (S = sentence,
NP = noun phrase, and so on), and the relationships among the them by an arrow that
can be read simply as “is”’; the | symbol means “or.”-Once a set of productions has

been specified, the grammar can be used to generate sentences; every sentence
generation or derivation begins with the sentence symbol

S

Thereafter, the procedure is to: (1) identify the leftmost symbol in the derivation as
it stands so far, (2) search the list of productions for a production in which that
leftmost symbol is to the left of the arrow, and (3) rewrite the leftmost symbol in the
derivation with what is to the right of the arrow in the production. So, (1) the leftmost
label is currently S, (2) production 1 has S to the left of the arrow, and (3) the S in the
current derivation is rewritten with what is to the right of the arrow, that is, NP VP

NP VP

Now (1) NP is the leftmost label, (2) there are two possible choices of production
(2,3) with NP to the left of the arrow; the choice is entirely free, and (3) the NP in the
current derivation is rewritten by what is to the right of the arrow "
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DET N VP

And so on. When there are no more labels to be rewritten, the derivation is
complete and the result is a sentence

the N VP
the man VP

the man bites

So far, we have been looking at phrase structure in natural language simple because
it is intuitively accessible. It has, however, to be stressed that in FLT phrase structure is
generalized to artificial languages such as computer programming languages and
Morse code, among many other actual and potential examples. One way of looking at
the string abcdefg is simply as a sequence of symbols: a followed by b followed by c,
and so on. One can, however, see it as being composed of phrases, say ab and cdefg, or
abcd and efg; cdefg might itself consist of subphrases cd and efg, or subphrases ¢, de,
and fg. Which is correct? There is no intuitive guide to phrase structure in artificial
languages such as there is for natural ones. The only way one can know the correct
phrase structure of an artificial language string is by knowing the grammar that
generated it. This last observation is crucial to understanding FLT, and to conventional
NLP more particularly.

More formally, a phrase structure grammar (henceforth PSG) has three com-
ponents

¢ A finite set of terminal symbols, which is the symbol set from which the strings of the
language generated by the PSG are made.

* A finite set of nonterminal symbols, comprising the phrase type and word category labels
(the NP, VP, etc. of the set of productions presented earlier).

* A finite set of productions of the form

xNz - xyz

* where
N is a nonterminal symbol andx, y, and z are possibly empty strings consisting of terminals
and/or nonterminals.

The last of these components is rather stilted. What it means is that the left side of a
production may consist of any séring of terminals and/or nonterminals, with the
restriction that it must contain at least one nonterminal, whereas the right side can be
any string of terminals and/or nonterminals (and may in fact be completely empty—
the so-called null string).

This is a very general definition, but for present purposes we shall need to be more
particular. By placing various sorts of additional restrictions of the above specification
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of how a production may look, it is possible to categorize PSGs into various types. NLP
has been most interested in the following two types

Context-free Grammars

In the general definition of PSG, the only restriction on the left side of a production
is that there be at least one nonterminal; in addition there can be any number of
terminals and/or nonterminals. In context-free grammars (CFG), the only thing
allowed on the left side is a single nonterminal, Again, the general PSG definition says
that the right side of a production can be any string of terminals and/or nonterminals,
including none. In a CFG, there must be something on the right; the null string is not
allowed. Examples of context-free productions are

S —- NP VP
NP - DET N

as in the foregoing example grammar; that grammar was context-free.

Regular Grammar
This is the most severely constrained type of grammar. Productions may have one of
the following two forms:

1. A single nonterminal on the left, and a single nonterminal on the right
2. Asingle nonterminal on the left + a single terminal on the right

Given that grammars can be categorized into types, the question of why they should
be remains. There are two reasons

* The grammatical classes form a hierarchy according to their language-generating “power”,
that is, according to the types of string patterns that they can generate. The least powerful
class is that of the regular grammars, and next in the hierarchy are the CFGs. Linguists have
long held that regular grammars cannot generate the strings that make up natural
languages. Until recently many believed that the class of CFGs could, but that has now been
shown to be false, and there has been a move to a yet more powerful class. For NLP,
however, none of this is very important, for reasons given in Ref. (5).

* Much more important for NLP are the different kinds of phrase structures that the regular
and CFGs assign the strings of the languages they generate. Consider the string dogs without
leads stray . Here are, respectively, the regular and the CFGs that generate it

S — dogs A S —» NP VP
A — without B NP —» N PP
B — leads C PP - PREP N
C — stray VP >V s
- N — dogs | leads
V — stray
PREP — without

Tree diagrams can be used to show the structure of the derivations according to the
two grammars, again respectively
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S
/ \
dogs A NP VP

N

without B N PP stray

lodgs O dogs PREP N

stray without leads

The first structure says that the string consists of dogs followed by the rest of the
string, that the rest of the string consists of without followed by the rest of the string,
and so on. In other words, the structure of the string is purely sequential. Moreover,
given the limitations on the form of production in regular grammars, every string is
purely sequential; regular grammars always assign this sequential structure and no
other. The context-free structure, on the other hand, says that there is a structure over
and above the purely sequential; that the first three words group against the fourth,
and that in the first group without leads groups against dogs. This second analysis is the
* more intuitively appealing; its structuring of phrase interrelationships feels as right as
the first feels wrong. And, in fact, there is overwhelming empirical support for the
second. Everywhere in English sentences one finds prepositions followed by nouns
followed by the (preposition + noun) pattern, and by (noun + [preposition + noun])
followed by a verb. In short, CFGs capture the phrase structure of English, whereas
regular ones do not.

AUTOMATA THEORY

Automata are mathematically-defined machines that process strings generated by
phrase structure grammars. Assuming some grammar G, this processing is sensitive to
the structures characteristic of the strings generated by G. This section (1) describes
the nature of automata, and looks at how different classes of automata actually
process strings, and (2) considers a particularly important type of automation in NLP,
the parser. The standard textbook is once again that of Hopcroft and Ullman. (4).

Automata

In describing automata, two preliminary notions have to be explained: state and
transition (On these see Haugeland, (6). Chess is a good basis for both. At the start of
a chess game the two players’ pieces are arranged in rows on opposing sides of the
board; the game ends when the pieces are arranged so that one player’s king can no
longer avoid being taken. Between beginning and end the pieces assume a sequence of
configurations on the board as each player alternately makes his or her move. Each
successive configuration of pieces constitutes a state—literally, the state of play. The
initial opposing rows represent the start state. When a player makes the first move the
state of the game changes, that is, the configuration of pieces on the board has altered.
When the opposing player makes his or her first move the state changes again, and so
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on. In these terms, a chess game can be seen as a sequence of state changes that stops
when the final state—checkmate—is reached. Now chess pieces cannot move arbi-
trarily around the board; each is constrained by (1) the pattern of movement
prescribed for it by the rules of the game, and (2) the current state of the board. So, at
any given stage of the game, the choice of possible next moves is governed by these two
constraints. Or, put another way, the transitions between successive states is governed
by the rules relating to the movement of types of chess pieces together with the current
state of the game. A transition can therefore be regarded as the conditions under
which it is possible to move from one state to another.

We consider two kinds of automata: finite state automata (FSA) and pushdown
automata (PDA).

An FSA consists of the following components:

* An input tape on which the strings to be processed are written. The machine uses a read
head to read one symbol at a time from the tape.

* If output is desired, an output tape on which the machine writes its output strings. The
machine uses a write head to write one symbol at a time onto the tape.

* A set of symbols from which input (and output) strings are made.

* A set of states; as its name indicates, the number of states must be finite.

* A state transition function that, given the current input symbol and the current state, tells
what the next state of the machine will be.

Applying this to the chess example, the set of symbols = the various types of chess
pieces, the set of states = the various possible configurations of the pieces on the
board, and the state transition function = the rules of chess that given the current
configuration of the board and the piece currently being moved, tell what the next
configuration of the board will be. What about the input string? It is the sequence of
piece-moves in the course of a game; that is, since the pieces are symbols, the piece-
move sequence becomes a symbol sequence—a string. Each game of chess can
therefore be seen as a finite state machine processing a string.

As an example, consider an FSA to process strings generated by the regular
_grammar

S —aX
X —>bY
Y —>c

This grammar generates a language L consisting of only one string: abc —not very
useful, but simple for illustrative purposes,(see diagram top of page 12).

This FSA is an accepter, the purpose of which is to separate strings that belong to L
from those that do not. The state transition function contains four states named A—D
quite arbitrarily; the transitions between states are represented by arrows; the lower
case letters labeling the arrows represent current input symbols; — opposite A
designates the start state, and + opposite D the final state; # is a string terminator.
String processing proceeds as follows. The read head is initialized to the first slot on
the input tape, and the state transition function to state A. The machine now reads one
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State transition function

s +

OO0
B C
Read[[]
head

alb]clafa -

Tape

symbol at a time from the tape, making a state transition for each one. If, when
processing stops, all the input symbols have been read and the machine is in the final
* state D, the string is accepted as a member of L, otherwise not. The machine begins by
reading the first symbol a, moves the head one slot to the right, and goes to state B. It
then reads b and moves the head one place to the right, and goes to state C, and so on.
Once the final state D is reached and the read head is over a string terminator, the
string abc is accepted. Had the input string been, say, abb, there would have been no
defined path out of state C and the machine would have stopped without reaching D,
therefore rejecting the string as a member of L.

A PDA is essentially an FSA with a memory. It consists of an input and an optional
output tape together with associated read and write heads, a memory called a stack,
and an FSA controller that coordinates access to the tape(s) and to the stack. The
tape(s) are identical to that of FSAs and require no further comment. There other two
components do, however. :

Stack. A stack memory is literally what its name implies: the things to be
remembered are stacked one on top of the other, like a stack of books piled on the
floor or the papers in an in-tray. The two crucial features of a stack memory are

* At any given time, only the top item of the stack is accessible.
* The order in which items are placed on the stack is preserved; the first is at the very bottom,
the next immediately above it, and so on.

Finite State Controller. The heart of a PDA is a controller that coordinates (1)
reading from and writing to the input and output tapes, and (2) putting symbols onto
and taking symbols off the top of the stack. This controler is an FSA whose states are
restricted to the following types:

START: Begin Processing

READ: Read a single symbol from the input tape.
WRITE: Write a single symbol to the output tape.
PUSH: Insert a single symbol onto the top of the stack.
POP: Take a single symbol off the top of the stack.
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ACCEPT: Accept the input string and stop.
REJECT: Reject the input string and stop.

When appropriately configured, a finite state controller consisting of such states can
process strings.

As an example, let us look at a PDA acceptor for the same language as the one used
above to illustrate the operation of an FSA; the PDA is here doing exactly the same job
as the FSA, but in a different way: ,

Finite state controler

Stack
readfwrite
head

Stack

Read head Il

afbfc o f#---

Input tape

The PDA is initialized by putting the input tape read head over the first symbol in
the string, inserting the string symbol S into the stack, and putting the machine into the
START state. There is a transition to POP, and the nonterminal S comes off the stack.
Follow the S-transition to the leftmost READ state. Read the terminal symbol under
the read head, and move the head one place to the right; if the symbol is not a, then go
to the REJECT state and reject the string. Otherwise, PUSH the nonterminal X onto
the stack and return to POP. Now POP X olit of the stack and follow the X transition to
the middle READ state. Read the terminal symbol under the read head, and move the
head one place to the right; if the symbol is not b, then go to the REJECT state and
reject the string. Otherwise, PUSH the nonterminal Y onto the stack, and return to
POP. Now POP Y and follow the Y transition to the rightmost READ state. Read the
terminal symbol under the read head, and move the head one place to the right; if the
symbol is not ¢, then go the REJECT state and reject the string, otherwise accept it.
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As with phrase structure grammars, the question of why different classes of
automata are needed arises. The answer is that there is a direct correspondence
between the classes of phrase structure grammar and of automata. Regular grammars
(RG) and FSA are equivalent; for every RG, there is an FSA that will process the
language it generates, and for every FSA there is an RG that generates the language it
processes. The same goes for CFGs and PDAs. Note an asymmetry, though. There is
no guarantee that an FSA can be found to process a context-free language, but there is
a PDA for every language generated by an RG. The consequence of all this is that if
one knows the grammar of the language in which one is interested, the choice of
automaton class to process it is obvious.

Parsing

As we shall see in the following section on semantic theory, the assignment of
meaning to a string requires that the structure of the string be known. But input strings
do not come with structural descriptions conveniently attached. An NLP system
therefore has to include a mechanism whereby the structures of the strings that it
processes can be discovered. Such a mechanism is called a parser. To build a parser,
one first of all has to know the grammar that generated the strings to be processed.
Then, one can use an automaton of the corresponding class to construct a device that,
given the grammar and a set of strings, will return for each string a structural
description that shows which grammatical rules were used to derive the string, and in
what order. For example, take the CFG presented earlier

S —- NP VP

NP - DET N

NP > N

N — man | dog | cat
DET — the | a

VP - V NP

VP >V

V — bites | catches

The grammar generates the string the cat bites the man ; the corresponding structure is
shown by the following tree:

/S\
NP VP
Fas e,
DET N Y NP

| It e 7\

the cat bites DET N

the man
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The function of the parser, given the cat bites the man as input, has to reconstruct this
tree. There are standard ways of building parsers (for which see) Ref. (7).

SEMANTIC THEORY

So far we have been concerned with the syntactic aspect of language: how ordered
symbol strings are generated and processed. Syntax is, however, not the whole story
for NLP. To see what the rest is, one has to step back and ask what the point of NLP
actually is. Most researchers would reply that it is to design and build computational
systems that process language for some purpose—that it has to be about something.
As noted in the introduction, that purpose can range from a commercially exploitable
device that permits human-computer communication via natural language in, for
example, a natural language front-end for a database, through to the linguistic
component of an artificially intelligent system. Whatever the case, however, syntactic
manipulation of uninterpreted symbols is insufficient. What is required is (1) that
meaning be be derived from input strings, and (2) that that meaning be represented so
that it can participate in the system’s computational processes. This section conse-
quently addresses the issue of meaning in NLP, and the next considers representation.

The discipline concerned with linguistic meaning is semantics . Compared to syntax,
which is comparatively well understood, semantic theory is still tentative in many
respects. In fact, although the question of what it means to mean has been a
philosophical problem since antiquity, there is still no uncontroversial answer. What-
ever meaning is, though, semanticists agree that the essence of their discipline is to
associate linguistic expressions—in the terms of the current discussion, strings—with
meanings. That task has various requirements; the ones most directly relevant here
are

* To assign meaning to the primitive expressions of a given language—in the terms of formal
language and automata theory, to terminal symbols

* To show how the meanings of these primitive expressions relate to composite expressions in
the language, that is, to phrases and complete strings

* Because the whole point of language is to be able to talk about the wold around us, to show
how linguistic meaning relates to the world.

These issues have been addressed in different ways by a variety of theoretical
approaches to semantics. There is no hope of being able to cover even the major
varieties here. Instead, the account given by formal semantics (also known as Mon-
tague semantics) is the basis for discussion (8); formal semantics is chosen because it
has been and continues to be influential in research.

Formal semantics defines the meaning of a string as its truth conditions: a string
means what the world would have to be ljke for it to be true. Thus, the sentence the
unicorn fights the lion is true only if in the world in which it applies (1) unicorns and
lions exist, (2) the notion of fighting between creatures exists, and (3) unicorns and
lions are or can be aggressive toward one another; items 1-3 are the truth conditions
of the sentence. Because truth conditions are defined relative to a world in which the
language in question is to be used (a “world of discourse”), formal semantics defines a
world of discourse for that language by building a model of that world. Such a model
has two components
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1. The entities of the world of discourse are identified—for example people, animals,
objects, and ways in which these interact—and the relationship between this set of
entities and the symbols of the language in question is defined. This relationship is called
denotation, and denotation itself has two aspects.

a. The extension of a symbol is the set of entities in the world model to which that
symbol applies. For example, the extension of the symbol dog is the set of all dogs in
the world.

b. The intension of a symbol is rather more difficult to grasp, but intuitively it is the
essence of what a symbols means—here, the intension of the symbol dog is dogginess
in the abstract, or in other words the concept “dog”. Slightly more formally, it is the
specification of the conditions under which an entity can be a member of the
extensional set. With the dog example, that specification would be a list of features
such as “mammal”, “four legs”, “tail”, “smells”, and so on.

2. A specification of how the denotations of composite expressions such as phrases and
strings are constructed from the denotations of the language symbols is given. This is
done using the principle of compositionality attributed to the philosopher Frege, which
says that the meaning of a composite expression is a function of the meanings of its
component symbols and the way in which they are combined. Specifically, some grammar
(perhaps a context-free PSG, but not necessarily) is specified to generate the strings of
the language. Associated with each syntactic rule in the grammar is a corresponding
semantic rule that derives the meaning of the phrase or the string from its immediate
constituents; this is known as the rule-to-rule hypothesis. For example, if the grammar
contained a syntactic rule S — NP VP, the semantic rule would specify that the meaning
of a sentence is made up from the meaning of the noun phrase and the meaning of a verb
phrase; the meanings of NP and VP would be similarly defined until, at the end of the
string derivation, the denotations of the primitive symbols need not be derived, but are
explicitly defined. To recover this meaning from an input string, an NLP system would
recover its structure using a parser, and then, knowing which rules were applied in what
order, would use the associated semantic rules to build up the corresponding meaning.

The assignment of denotations to linguistic symbols satisfies both the first and the
third of the requirements of a semantic theory stated earlier, in that it assigns meaning
to such symbols by relating them explicitly to real-world entities, and the second of the
requirements is satisfied by the appear to the principle of compositionality and its
implementation by means of the rule-to-rule hypothesis.

REPRESENTATION

Many problems in theoretical syntax remain, and many more in semantic theory,
but the NLP researcher has one to add to them all: representation. The crux of the
problem is this: how can the abstract entities posited in syntactic and semantic theory,
together with their interrelationships, be incorporated into a real-world computa-
tional system so that they participate in the system’s processing? Let us look more
closely at this requirement.

A real-world computational System is physical; it computes by going through a
sequence of distinct physical configurations, and each change of configuration has a
physical cause. Such things as sets, grammars, automata, states, stacks, string struc-
tures, and meanings are, however, not physical but abstract. Like truth, justice, and
love they do exist, but not as physical entities in the world; the notion of an abstract is
a slippery one, but just to get an intuitive grasp one can—with full awareness of
begging questions—think of an abstract as an interpretation of the world by humans.
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Since only physical causes can affect the configuration of a real-world computational
system, a way has to be found of representing abstract sets, string structures, meanings,
and so on in a physical way. Once this is done, the physical representations can be
made to enter into causal relationships with one another in such a way that they
process physical strings, and thus constitute an NLP system. Representation of
syntactic abstract entities is straightforward in principle if not always in practice.
Representation of semantic abstract entities is anything but. We begin with syntax.

The entities of formal language and automata theory are mathematical, and
therefore well defined. Making them computationally efficacious is as easy as writing a
computer program. All high-level programming languages provide data structures for
representing sets, lists, and trees, and these are adequate for representing the requisite
entities. One might object that programming languages are themselves still abstract,
are removed from the physical, and are consequently not truly representational. This
is true, but the associated compiler translates programs into machine language, which
is physical. A program implementing, say, a PDA, thereby becomes a string of physical
memory register configurations that causally determine the behavior of the computer
on which the program runs.

The entities of semantic theory—or, at least, of formal sematics—are also mathe-
matical and well defined. Nevertheless, representation of them has caused and
continues to cause problems for NLP. We will look at one problem of principle, and
one of practice.

The problem of principle concerns denotation. Formal semantics says that the
denotation of a symbol consists of an intension and an extension. Intensions are not
particularly problemmatical. They were characterized earlier as sets of features that
describe the essence of the meaning of symbol; that is, the criteria that define set
membership, so one could use a list data structure in a programming language to, for
example, list the features of dog that define dogginess. That is, in fact, the usual
approach in conventional NLP. But it is the extensions that cause the difficulty. Formal
semantics defines extensions as sets of real-world entities. Sets are mathematically
well defined, but real-world entities are not, and they sit awkwardly as physical objects
in a world of mathematical abstractions. This is, in my view, a serious problem for the
theory, but, even putting that side, one is left with the problem of how to represent a
real-world entity in a computationally efficacious form. How can human individuals be
represented? By their features? No, that is intension. Pictures? Smells? To my
knowledge, no good solution exists; this problem is, in fact, a major argument against
the possibility of ever endowing a computer with true semantics—that is, with an
“internal” understanding of the relationship between the strings it processes and the
real world (9, 10). The problem, in essence, is that without some way of representing
real-world entities in a computer, it cannot have knowledge of the world, and hence
cannot have true understanding of language, but that leads on to things beyond the
scope of this discussion.

The practical problem is one of scale. Even assuming that a way could be found of
representing real-world entities in a computational system, and thereby of implement-
ing a formal semantic model in such a system, one would have to ask (1) how many
such entities there are, and (2) what the rules governing their interrelationships are.
For toy experimental worlds with relatively few entities and simple interrelationships,
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a formal semantic NLP model seems tractable (assuming a solution to the extension
problem), but for NLP the world of discourse is our own real world, and both the
number of entities and their interrelationships are vast and terrifyingly complex; it
may be possible to represent the world in a computer, but many (myself included)
doubt that it can. Allied to this is the self-evident observation that, unlike the well-
defined model worlds of formal semantics, the real world is constantly changing and
unpredictable, and it is difficult to see how a representation of a predefined model in a
computational system could keep track of it.

ANN NLP

Having described some of the fundamental ideas and issues in NLP, we are now in a
position to see how ANN research relates to them. There is no question of being able
to give a one-for-one account, that is, to counterpose well-developed ANN-based
theories of language, language processing, semantics, and representation to the
conventional ones. ANN NLP has been intensively studied for less than a decade, and
the corresponding theories are still being developed. Much of this development is
being done in terms of how the conventional (so-called classical) paradigm in
cognitive science relates to the ANN-based (“connectionist”) one, and coherent
syntheses are beginning to emerge, but this whole area was excluded from the scope of
the present discussion not because it is peripheral to NLP—it is directly relevant—but
because it would extend the discussion beyond reasonable limits. Given its engineer-
ing NLP orientation, what follows concentrates on some of the main“practical” results
achieved so far.

The discussion is in two parts. The first describes how a popular variety of ANN
looks and works, and the second goes on to consider how this type of ANN is used in
NLP. The second part is itself divided into three subsections: (1) syntatic processing,
(2) representation of structure, and (3) representation of lexical meaning,.

ANN COMPUTATION

An ANN usually consists of numerous interconnected processors. It computes by
receiving inputs on a set of input processors, propagating these inputs along the
connections with the other processors, and delivering the result on a set of output
processors; often a set of processors that has no direct connection with the outside
world is involved in the propagation of inputs to outputs. The nature of the computa-
tion performed is determined solely by the pattern of connectivity among processors.

This is a highly general and rather stark description of what an ANN is and how it
computes, and it will need to be elucidated in what follows. It subsumes a variety of
ANN architectures that have been and are currently being developed (3) and, as noted
in the introduction, what follows cannot hope to cover them all. The procedure is,
therefore, to choose one particular architecture that is both widely used in ANN
research, and accessible at an introductory level. That architecture is the distributed s
feedforward , three-layer net with the associated back propagation learning rule.
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Circles here stand for processors, henceforth called units, and the lines between
them for connections between units. The units are arranged in layers according to
their function: those that receive inputs from the net’s environment, those that deliver
the result of the net’s computation to the environment, and those with no direct
connections to the environment (“hidden units”) whose role is to take part in the
computation. All units in the input layer are corrected to all those in the hidden layer,
and all those in the hidden layer to all in the output; there are no direct input-output
connections.

To see how such a net computes, one has to understand the nature of (1) the inputs

and outputs, (2) the connections, (3) the units, and (4) the interaction between units
and connections.

Inputs and Outputs

A net takes vectors as inputs, and delivers vectors as outputs; vectors are simply lists
of numbers. Thus, if one wanted a net to do arithmetic, one could represent numbers
not by the usual arabic numbers but in binary form: 0'= 00000, 1 = 00001, 2 = 00010,
3 = 00011, and so on. Each such binary representation can be regarded as a vector: a
list of Os and 1s. So, if one wanted a net to take an integer as input and return its double
as output, the input and output vectors would look like the following:

—
0
0|
1 |
o

—

| =d=lel=]=]
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Note that there is one input unit for each component of the input vector, and one
output unit for each output vector component.

Connections

It has been noted that input is propagated through the net along the connections
among units, and that by the time this propagation reaches the output layer a
computation has been performed.-How the computation happens has not yet been
described. It is, however, the case that the connections are crucial to the computa-
tional process. Specifically, the connections can take on varying strengths. Indeed, if
the net is to carry out any interesting computation, the strengths of the interconnec-
tions among its constituent units must have significant variation, since the configura-
tion of connection strengths is what determines the computation that the net is
capable of performing. How a net comes to acquire the relevant connection strengths
is something to which we shall be returning.

Units

The first of the above diagrams differentiates units according to their roles. In
principle, however, all units are identical as processors, that is, in terms of the
functions they compute. This is a slight oversimplification in that input units differ in
one important respect from the hidden and output units, but that difference can be
dealt with in a moment. Each unit performs a very simple computation: it sums all the
inputs coming into it over its incoming connections, applies some function to the sum,
and then sends the result along all its outgoing connections. The precise nature of the
function applied to the sum is not particularly important here; its purpose is to ensure
that the sum is mapped into some well-defined interval, say 0..1 or -1..1, so that what
gets propagated along the outgoing connections in response to all the inputs, no
matter how many or how large or small, is a value in that interval, say 0.67 or -0.32. The
input units differ simply in this: each one only gets a single input from its environment,
and that value is sent directly along the outgoing connections without any function
being applied to it.

Interaction Between Units and Connections

Take any unit u; in the input layer. (For ease of reference, units are usually
numbered from top to bottom from 1..n, and referred to by number; the i subscript
here stands of any given unit.) Assume some value in the corresponding component of
the input vector v;, say 0.74. The input unit propagates the value 0.74 along all its
outgoing connections. But we have seen that connection strengths in any interesting
net will vary significantly. The outgoing connections from u; will therefore exhibit
some degree of variation. This means that the input value 0.74 will propagate more or
less strongly along each connection. If one represents strength by real values in the
range 0..1, and the five connections coming out of u; are 0.32, 0.27, 0.89, 0.97, 0.12,
then the value that actually reaches the hidden units along these connections will be
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(0.74x 0.32), (0.74 x 0.27), (0.74 x 0.89), and so on. This applies to all input units. It
also applies to all the hidden and output units. A given hidden unit receives values
from the input units in accordance with the strength of its connection with each of
them. A function is then applied so as to reduce the sum of these values to an interval,
say 0..1, and that a reduced value is then propagated along each of the hidden unit’s
outgoing connections. But these connections vary, too, so that the reduced value is
propagated more or less strongly to the output units. And finally, each output unit
sums all its inputs, applies the function (which is usually called a “squashing” function
because it squashes sums into some interval), and outputs the result into the
corresponding output vector.

Putting all this together, one can see how an ANN computes. Assume well-defined
input and output vector sets, and a net whose connections are such as to enable it to
carry out some mapping between the two. Now take an input vector and apply it to the
input layer. The units propagate the input values along their outgoing connections, the
value sent along each connection being adjusted in line with the connection’s strength.
These adjusted values arrive at the hidden layer. Each hidden unit sums the values on
its incoming connections, applies the squashing function, and sends the result on its
outgoing connections; these values are in their turn adjusted in line with the connec-
tions between hidden and output layers. The adjusted values arrive at the output layer,
at which each unit sums the values on its incoming connections, applies the squashing
function, and outputs the result of the corresponding component of the output vector.
The output vector is then the result of the computation. A computation in an ANN can
therefore be seen as a wave of values sweeping through the net from input to output
layers, and being modified by the connection strengths as it does so. Note, finally, that
all this happens in parallel. All the components of the input vector are presented
simultaneously, and all input units propagate the values independently and simultane-
ously; each hidden layer unit can proceed with its summation, squashing, and value
propagation as soon as all its input values are in, without having to wait for any of the
others. The same goes for the output units. )

Clearly, the connection strengths in a net are crucial to its computational capability.
Suitable connection strengths have so far been assumed, but how are connections
appropriate to some specific computation arrived at? In very small nets they can be
handcrafted, and for some kinds of nets it is possible to calculate them explicitly, but in
general connection strength configurations in an ANN are learned. The learning
mechanism described here is back propagation, one of many such mechanisms
currently available. Assume a well-defined input-output mapping, that is, a set of pairs
in which the first element is the input and the second the associated output. The
mapping suggested above, in which the input is an integer and the output is that
integer doubled, is a good example; the function computed is “double the input”. Back
propagation uses such pair-sets to train ANNS, and it works like this. Take a pair—for
example, binary 3 and its double, binary 6, as in the above diagram. Present the first
element of the pair as input, and let it propagate through to the output layer. Now
compare the result at the output layer to the target output—that is, what the net
should be associating with the input: the second element of the pair which here is the
binary vector representing 6. If the actual result on the output layer corresponds
exactly or closely within some tolerance, do nothing, because the connection strengths
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happen to be exactly those required to perform the desired mapping, that is, to
associate 3 with 6. If, however, there is a discrepancy, adjust the connections in such a
way that if the input were presented again, the actual result on the output layer would
be closer to the target output. Now present the same input again, let it propagate
through the newly modified connections to the output, and compare it once again to
the target. If there is still a discrepancy, adjust the connections and try again. This
procedure is repeated until the actual and target outputs correspond. When they do,
the connections have been configured so as to carry out the desired 3-6 mapping. But
the function “double the input” should apply to any integer, or at least to some useful
finite range of integers. Training a net to handle such a finite set of associations
involves presenting it with each pair in the set and following the learning procedure
just described. Given a sufficiently large net, back propagation can find a single set of
connection strengths to carry out multiple pair associations, thus allowing the net to
compute interesting functions. Details of how back propagation actually works are
found in Ref. 71.

LANGUAGE PROCESSING

Syntactic Processing

Language processing is intrinsically a sequential business. In spoken English, for
example, words are uttered in temporal sequence, and the hearer processes them in
that sequence; in written English the sequence is spatial, from left to right, on some
surface. ANNs for language processing consequently have to be able to deal with
symbol sequences.

The first step is to find a way of representing symbol sequences so as to be amenable
to processing by ANNs. In automata theory, machines process symbol strings directly:
they can take the physical shape @ and process it, then ¢, and so on. But there is no
obvious way for a net with the architecture described above to work directly with a or
¢, or for that matter with cat or dog. The symbols have to be suitably encoded. This is
standard procedure even in conventional NLP, although the encoding is mostly hidden
from the programmer, and is generally forgotten about. A conventional NLP program
written in a high-level language refers toa and ¢, and to character strings cat and dog,
but in fact the compiler represents each letter by means of some standard encoding
(typically ASCII). ASCII encoding simply sets alphabetic characters in a one-to-one
relationship with the binary numbers 0..127. For example, 00100000 = space charac-
ter, 01100001 = a, 01100010 = b, and so on. We have already seen that such binary
numbers can be construed as vectors and input directly into an ANN; a character
string would thereby simp)y be a sequence of binary vectors, one for each character,
that the net could process one at a time. Thus the string abcdefg would be encoded as
ACSII for a followed by ASCII for b, followed by ASCII for ¢, and so on. This extends
readily to NLP, as the following diagram shows:

t h e m a n

01110100{01101000|01100101 01101101|01100001 {01101110




23 ARTIFICIAL NEURAL NETWORKS

To enable a net to input one word at a time, two steps are necessary

* Concatenate the binary vectors for each of the constituent letters, forming one long vector.
* Give the input layer of the net exactly as many units as the concatenated word vector has
components, and input the word vector directly.

Thus for the word the

Connections
to hidden layer

3L

Various other encoding schemes are possible. The one described here, for example,
is one of several in which there is a purely arbitrary relationship between the symbol
and the encoding: binary for c is very different from binary for o, even though they are
much closer to one another in terms of physical shape than, say, c and m. An encoding
scheme that preserves and exploits such similarities can have some considerable
advantages for ANN NLP (see, e.g., Ref. 5).

Having proposed an approach to representing symbol sequences amenable to ANN
processing, the next step is to find a way of allowing ANNs to process them. The net
architecture described above is not self-evidently suited to the task, since computation
is a matter of associating (vector representation of a) single symbol with the (vector
representation of) another. True, a symbol sequence could be handled by presenting
each symbol to the net in turn, but that would not solve the problem, since each
successive computation would be independent, and would have nothing to do with
those that preceded. But everything that has been said about language processing so
far depends on relating the component symbols of a string to one another in a
structured way—the symbols do have something to do with one another, and the
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processing mechanism must reflect this. The most widely adopted solution to this
problem is to augment the above ANN architecture by making it recurrent . To see what
his means, we will look at the intuitively simplest kind of recurrent net, aptly enough
called a simple recurrent network (SRN), first proposed by Jordan (12) and subse-
quently developed by Elman (13, 14); SRNs are the basis for a good deal of recent
ANN language processing research. An SRN looks like the following (connections
between hidden and output units have been truncated for clarity):

i — e — - B
s

~ o g ~

feedback

This augments the architecture described earlier in two ways. First, a number of
units equal to the number of hidden layer units has been added to the input layer.
Second, there are feedback lines from the hidden units to those that have been added
to the input. Why is this architecture better for sequential processing of strings?
Because, if it is run at discrete time steps so that the configuration of the hidden layer
at time ¢ — 1 is jointly involved with the input at time ¢ in generating the next hidden
layer configuration and associated output, then it is a finite state machine.

* The set of input and output vectors is the symbol set.

* The set of hidden layer configurations is the state set.

* The connections between input and hidden layers are the next state function in that for
every combination of current input symbol and current state (i.e., the hidden layer

configuration fed back to the input layer) they generate a characteristic associated next
state in the hidden layer.

* The connections between hidden and output layers are the output function, in that for every

combination of hidden units they generate a characteristic associated output in the output

layer. s

Because it is an FSA, a trained SRN processes strings exactly as an FSA does. An
FSA begins in an initial state; the SRN’s hidden layer is initialized to a known
configuration. An FSA then reads the first symbol, and this symbol, together with the
current state, causes the machine to move to the next state (and deliver any output); in
that new state it reads the next symbol, and that symbol, together with the current
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state, causes the machine to move to the next state (perhaps with output), and so on to
the end of the string. The SRN reads the first symbol vector into the external input
part of the input layer, and has the initial state in the state part of the input layer. That
combination is propagated to the hidden layer, which assumes a new configuration,
which in turn generates output. This new configuration is fed back to the input layer.
The net now reads the next symbol vector, and the cycle is repeated for the rest of the
string.

We will now look at examples of research that,uses the SRN architecture and
developments of it for language processing. That research can be divided into two
broad categories, here referred to as top-down and bottom-up. Assume the existence
of some language whose strings are to be processed. Faced with this task, the top-down
approach works within the framework for language processing provided by formal
language and automata theory. It proceeds by specifying a grammar that generates the
string set, designing an automaton capable of carrying out the desired processing, and
then uses ANNs as a technology to implement the automaton. The bottom-up
approach, on the other hand, does not begin with any prespecified theory. Rather, it
exposes an ANN to the string set, and on the basis of syntactic regularities in the string
set, expects the net to configure itself by inductive inference into a device capable of
carrying out the required computation. The net thus configured can (but need not) be
understood in terms of automata theory, and a grammar for the string set can
subsequently be derived from the automaton if desired. The examples that follow
should clarify all this.

The top-down approach is exemplified by Moisl (5 ); I cite my own work first not out
of self-aggrandizement, but because this is its natural place in the structure of the
discussion. The aim is to design a parser for general NLP, and then to implement it in
an ANN. The argument proceeds in the following stages.

First, the deterministic pushdown transducer (DPDT), a restriction on the general
class of pushdown automata, was proposed as an adequate formal model for general
NLP. Essentially, (1) an adequate model must be capable of assigning syntactic
structural descriptions to all possible NL strings, (2) the structural descriptions must
be empirically justifiable, and (3) the structural descriptions must support a nontrivial
compositional semantics, since, as noted earlier, the whole point of a parser is to
support semantic interpretation of strings. The DPDT is the simplest adequate class of
automata for items (2) and (3); given a maximum length restriction on strings, it
satisfies item (1) as well. Since NLP is about the design and construction of physical
devices processing physical strings, such a restriction is not an obstacle: all real-world
natural language strings are finite in length and in fact very short relative to the
unbounded-length strings postulated in computational theory and linguistics.

Second, given the string length restriction, the DPDT can be simulated by a finite
state transducer (FST). “Simulation” in this centext means “black box equivalence.”
Given a device A whose inner workings are known, and another B whose inner
workings are unknown (i.e., a black box), if the input-output behavior of B is exactly
the same as that of A, then B simulates A. In other words, they compute the same
function, and in terms of the job they do they are equivalent, although they do it in
ways that are possibly different. Here, the DPDT and the FST compute the same
function in that for any input string both return the same structural description. They
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do so in different ways, however, because of their different architectures.

Third, an SRN was trained to perform the same input-output mapping as the DPDT
using back propagation, thus simulating the DPDT.

Fourth, a computer implementation was used to test the performance of an SRN
trained to simulate the operation of a DPDT on a set of natural language strings. The
following characteristics emerged:

« The SRN successfully simulated the DPDT in that it was able to correctly parse all the

strings in the training set.

« In addition the SRN was able to parse certain strings generated by the underlying grammar

on which it had not been specifically trained. This indicates that training an SRN on a subset

of the language generated by the grammar will in general be sufficient to enable it to parse
all the strings generated by it.

The SRN failed to parse strings that were grossly ungrammatical (i.e., misplaced or missing

constituents), just as the DPDT did, and as both should: automata by definition process

only the strings generated by the associated grammar. It was, however, able to parse what
might be termed “corrupt” strings; that is, strings in which there were relatively minor
lapses in grammaticality. These were:

— Certain spelling errors in which individual letters were wrong or missing. For example,
with respect to the string the lark flies, the SRN was able to restore the correct form from
th lark flies, the lerk flies, the lard flies (but not the Irk flies) and complete the parse
correctly.

— 1In some but not all cases, the net was able to compensate for subject-verb number
disagreement and complete the parse. For *the bard chant the holy verse, for example, the
SRN correctly restored the bards chant the holy verse and returned the correct structural
description.

The DPDT, in the other hand, failed when confronted with either kind of corruption.

Finally, the main conclusion was that the proposed approach offers what NLP work
has traditionally set as a major goal: devices whose behavior is consistent with abstract
linguistic theory (competence), and at the same time displays resilience in the face of
degraded input that characterizes real-world linguistic environments (performance).
In conventional NLP systems competence is relatively easy to achieve, but the
combination with performance is much more difficult; in the research literature,
conventional systems are described as “brittle” because of the difficulty they have in
handling degraded real-world input. In the ANN implementation of a conventional
model proposed here, the performance aspect comes without any extra effort; it is a
by-product of the fact that the implementation medium is an ANN.

Another example of the top-down approach to ANN NLP is the work of Williams
and Zipser (15), whose trained a recurrent net to implement the finite-state controller
of a Turing machine (the most powerful class of automata), and Touretzky (16), who
developed a (nonrecursive) ANN that creates and manipulates such conventional
data structures as stacks and trees.e

The bottom-up approach is exemplified in the work of several individuals and
research groups. This approach addresses a general preblem that has been and
continues to be an issue in nonconnectionist research: the language acquisition/gram-
matical inference problem, stated by Pollack (17) as follows. [See Lucas (18) for a
recent collection of papers on this subject].
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In its narrowest formulation, it is a version of the inductive inference or ‘theory from data’
problem for syntax: discover a compact mathematical description of string acceptability
(which generalizes) from a finite presentation of examples. In its broadest formulation it
involves accounting for the psychological facts of native language acquisition by human
children, or even the acquisition of language itself by homo sapiens through natural selection.

Most of the work currently being done in ANN grammmatical inference is con-
cerned not with natural but with artificial languages, the aim being to establish
theoretical results about ANN language processing. But, as we saw, natural languages
are a special case of language as defined in formal language and automata theory, and
these results are consequently of direct relevance to NLP.

Several research groups have been looking at the “easiest” kind of grammatical
inference: given a set of strings, let the net infer a finite state automaton capable of
processing them, and of generalizing to previously unseen strings generated by the
corresponding regular grammar.

‘Servan-Schreiber et al. (19, 20) “show that the SRN can learn to mimic closely a
finite state automaton ... . In particular, we show that it can learn to process an infinite
corpus of strings based on experience with a finite set of training exemplars.” The
procedure was to generate a large (60,000) set of binary strings of lengths ranging from
3 to 30 digits, using a regular grammar, as the training set for the net. For each string,
each successive digit was given to the net as input, and the target output was the next
digit in the string. Once training was complete, the net was tested as follows:

* It was presented with a large number (70,000) of purely random binary strings, a few of
which happened to be grammatically legal relative to the grammar that generated the
original training set, but most of which were not. It was able to separate the grammatical
from the ungrammatical ones perfectly.

* It was presented with 20,000 grammatical strings, some of them from the training set but
others not, and was able to process them all.

* It was presented with grammatical strings much longer than any on which the net was
trained—more than 100 digits—and was able to process them all.

The conclusion was that by exposure to a linguistic training environment, the SRN
was able to infer a finite state accepter for strings generated by the regular grammar
underlying the training sample; implicit here is that it had learned to process not only
the training sample, but to generalize to all grammatically legal strings. The chief
theoretical result, therefore, is that exposure to a linguistic training environment
induced in the SRN an FSA corresponding to a regular grammar on the basis of a
relatively restricted sample string set.

Servan-Schreiber et al. analyzed the network with a view to determining how it
managed to work as an FSA. This was done by saving all the hidden layer configura-
tions that the net assumed during the text phase, and then applying cluster analysis to
the whole set of such configurations. Cluster analysis is a mathematical technique for
determining the relative closeness of vectors to one another on some metric of
similarity. The result was that the hidden layer configurations were not spread
randomly throughout the available vector space, but that they clustered into groups
that are interpretable as the states of a finite state automaton. In the course of an
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analysis, moreover, an additional property with important implications for NLP was
discovered. When the individual state vector clusters were examined, it was discovered
that the hidden layer configurations making up a given cluster were differentiated
according to the path traversed before the node is reached, which means that as the
net goes through state transitions, it preserves a memory of the state trajectory. As the
authors point_out, this is not a characteristic of conventional finite state automata,
which by definition have no memory of previous states. The implication for ANN
language processing, and for NLP in particular, is that so called long-distance
dependencies can be efficiently handled by SRN FSAs. An example of such a
dependency in natural language is subject-verb number agreement: The boys who
came over the bridge the other day have gone home/The boy who came over the bridge the
other day has gone home. Conventional FSAs can handle such dependencies, but
require much duplication of states, and are very inefficient for string sets of any useful
size. SRN implementations of FSAs do it by “shading” states; that is, by developing
clusters of very similar vectors, each of which is essentially a single state, but in which
the small differences among vectors preserve state trajectory information. Moreover,
they do it for free, as a by-product of grammatical inference.

In subsequent work Servan-Schreiber et al. developed aspects of the above, and in
particular the following:

« Refined the interpretation of hidden-layer clustering: “The finite state machine that the net
implements can be said to approximate the idealization of an FSA corresponding exactly to
the grammar underlying the examplars on which it has been trained. This SRN, given
sufficient resources . . . converges on the theoretical FSA in the sense that it can be used as a
perfect finite state recognizer for the strings generated by the corresponding grammar.”
However, “the internal representations do not correspond to that idealization” in the sense
that the states of an SRN FSA are not primitive, but consist of closely related state vectors
that can as a group be interpreted as states of a conventional FSA, but that also carry state
trajectory information.

Extended the study of state trajectory information encoded by SRN FSAs from languages
generated by deterministic to languages generated by nondeterministic FSAs. When, for a
given current input and current state, the theoretical FSA allows two or more possible next
digits, the SRN learns to activate both the corresponding states simultaneously.

Examined in greater detail how state trajectory information is learned by the net, and the
factors that influence the net’s ability to learn it. These factors are

1. The nature of the state trajectories; some can be learned and some cannot.

2. The size of the net; if it is too small, the state trajectory information that learned initially
is progressively eliminated as training proceeds.

3. String length: as the distance between dependencies increases, the net finds it
correspondingly difficult to maintain trajectory information.

In their conclusion, Servan-Schyeiber et al. stressed the importance of the SRN’s
ability to preserve state trajectory information, and thus to process long-distance
dependencies, to NLP: “The ability to exploit long distance dependencies is an
inherent aspect of human language processing capabilities, and lies at the heart of the
general belief that a recursive computational machine [note: a conventional formal
grammar/automaton] is necessary for processing natural language. The experiments

we have done with SRNs suggest another possibility: it may be that long distance
dependencies can be processed by machines that are simpler than fully recursive
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machines, as long as they make use of [state] path information.”

The work of Servan-Schreiber et al. has been described in some detail. Examples of
similar work by other researchers can therefore be dealt with more briefly. Very
closely related is that of Cleeremans et al. (21) and Das and Das (22); others use
recurrent network architectures to achieve inductive inference of finite state automata
from formal language string sets, but differ from Servan-Schreiber et al. mainly in the
following respects: )

.

* SRNs are conceptually the easiest recurrent network architecture to grasp. Other research-
ers use more complex architectures: Giles et al. (23-25), Smith and Zipser (26), Pollack
(17), and Watrous and Kuhn (27).

* Network training procedures used by the researchers just mentioned differ in various ways
that are not particularly important for the purposes of this discussion.

* The dominant tendency in ANN research generally is to use tabula rasa learning: choose a

network architecture, randomize the initial hidden layer and the connections, and hope

that the net will infer regularities from the learning environment ab initio. There is no
reason why this should be so, however, and some researchers have begun to study the effect
of starting with a net that has some “knowledge” of the environment’s regularities before
training begins—in practice, whose connections at the onset of learning have been
appropriately pretuned—and concluded that learning is not only quicker and more
reliable, but in some cases allows the net to learn things that it failed to learn ab initio. [See

Sharkey and Skarkey (28) fora recent discussion with further references; see examples in

Omlin and Giles (29), Giles and Omlin (30)].

There has been some work on grammatical inference of automata belonging to the more

powerful class of PDAs using techniques similar to those we are currently looking at. See

Sun (37) for discussion and further references.

Pollack (1/7) adopts a physicist’s view of ANNs as nonlinear dynamical systems that can be

trained to approximate the string processing capabilities not only of finite state but also of

more powerful classes of automata by virtue of their fractal dynamics, and thereby offers an
alternative to automata theory as an interpretative framework for analysis of ANN
language processing devices.

The final work we shall be considered in this syntax section is that of Elman (13, 14),
who uses SRNs to infer FSAs not from formal string sets, but from sets of strings such
asone would find in natural language. It is described at some length both because of its
intrinsic interest for ANN NLP, and because it has been very influential in research.
Elman describes a series of experiments of increasing complexity.

* A letter string was constructed to see if the net could infer any of its regularities. This was
done in three steps. First, the consonants b, d, g were randomly assembled into a 1000-
letter string. Then each of the letters in the string was replaced according to the rules

b — ba
d—dii *
g — guuu

Finally, each of the consonants and yowels was encoded by a 6-bit binary vector, in which
each of the bits corresponded to a phonological/phonetic feature; b, for example, was
101001 (1 = consonant, 0 = vowel, 1 = stop, 0 = high, 0 = back, 1 = voiced). Note that
the net has no way of knowing what the coding means. The net was presented with the
resulting vector string such that, for each input vector, it had to learn to predict the next
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one. After training, the net was tested by a vector sequence constructed in the same way, but
with a different initial randomization of b, d, g. For each input vector, predict the next one.
The most obvious result was that, in general, network error was high and the prediction
wrong where the next letter was a consonant, and the network error was low and the
prediction correct where the next letter was a vowel. This shows that the net had inferred
such regularities as there were to infer in the string: consonants were random, and therefore
unstructured in their pattern of occurrence in the string, but once a consonant was
encountered, the vowel sequences were systematic, and the net was able to learn them.
The next experiment extended the one just*described to see if the net could extract the
notion “word” from letter sequences. Here, instead of the previous arbitrary letter
sequences, actual natural language strings were used. Specifically, 200 strings between 4
and 9 words long were concatenated, forming a stream of 1270 words, corresonding to 4963
letters. Each letter was then assigned a distinct 5-bit vector encoding. Input was one letter at
a time, and the task was to predict the next letter. The result was that network error for the
first letter of a word was high, because the order of words from so small a sample of strings
is not very predictable, but the error declined for the rest of the letters in the word. The net
inferred the predictable regularities in the strings, and they corresponded to the conven-
tional notion of word as certain kinds of letter sequences.

The next step was to see if an SRN was able to infer any syntactic regularities with the
general approach used in the preceding two experiments. The first step was to attempt this
with minimally complex strings: two and three words on the patterns [subject-verb] and
[subject-verb-object]. 10,000 such strings were generated using a restricted vocabularly of
29 words. These strings were, moreover, not arbitrarily constituted on the above patterns,
but obeyed standard syntactic and semantic natural language restrictions. Thus transitive
verbs took objects but intransitive ones did not; a verb like eat could only take something
edible (cookie but not rock) as an object, and so on. Finally, all the strings were con-
catenated into a single sequence, each word was assigned a characteristic but arbitrary 31-
bit binary vector code, and, as before, the net was given one vector at a time as input and
asked to predict the next one. Now, in interpreting the results, it has to be kept in mind that
while natural language strings in general and the training strings in particular have
structure, word sequence is not deterministic; noun followed by verb is a standard pattern,
but one can have men see, men run, men eat, and so forth. The net could, therefore, not be
expected to predict the next word even after training, and it did not do so. What it did do,
given some word, was learn what words could follow it, and activate the output layer
accordingly; that is, generate an output vector that was a combination of the vector codes
for each of the words in question. For example, after rock one expects words like move and
break vectors.

To see how the net did this, cluster analysis was applied to the set of internal layer

configurations obtained by presenting the complete training sequence once to the trained
net. The clusters showed that the net had partitioned the words from the training strings
into the basic noun and verb categories, and then subcategorized these in accordance with
grammatical and semantic features. Thus hidden layer configurations for animate and
inanimate nouns formed separate clusters, the animate noun configurations subcategor-
ized according to human and nonhuman, and so on. Thus the net was able to infer from the
training strings (1) lexical categories and subcategories, and (2) the ways in which these
categories and subcategories could combine syntactically.
Finally, there was an experiment td see what regularities an SRN could infer from more
complex string structures than those used in the immediately preceding one. This included
a recursive structure—multiply embedded relative clauses like dog who chases cat sees girl,
and even the classic center-embedding boys who girls who dogs chase see hear, which has a
long history in linguistics—and the requirement that subject-verb number agreement be
maintained across embeddings (dog who boys feed sees girl). Encoding and training were
analogous to those in the preceding experiment, and are not described again. The main
results were as follows:

30
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— Again, word sequence is not deterministic, and the net’s behavior was as before: it
predicted all the words that could follow a given one in the output layer.

— The net predicts that a singular subject will be followed by a singular verb, and a plural
subject by a plural one, or else by the relative marker who, which is correct.

— The net correctly predicts word order in embedded structures, and maintains subject-
verb number agreement atross them; that is, it has found a way of representing a long-
distance dependency. This was observed also by Servan-Schreiber et al.

In addition, EIman’s work bears on other relevant issues. For one thing, he suggests
an approach to preconditioning of nets for learning tasks that is different from that of
Giles and Omlin referred to earlier. His approach is incremental training by means of
increasingly complex training data. Elman observes that when an attempt was made to
train the net with the full range of string structures, including ones with embedded
clauses, it was unable to learn the task. He consequently trained the net in stages. In
the first stage only simple sentences were used. When training with those was
complete, a degree of domain-specific “knowledge” had been built into the net, and it
was now possible to introduce more complex strings into the training set incrementally
as further training proceeded, and in this way the net was able to learn the task it had
been unable-to learn before.

Representation of Structure

In 1988 two prominent cognitive scientists, J. Fodor and Z. Pylyshyn, published a
now famous article (32) in which they denied that connectionism—a blanket term for
ANN-oriented research—was a viable alternative to conventional (or as they called it,
“classical”’) language and automata theory as a paradigm for cognitive science, and
indeed that connectionism had little relevance at all for cognitive science, except
perhaps as an implementation medium. Its tone was not calculated to mollify connec-
tionists, and there ensured a spirited and still current debate that, polemics aside, has
been beneficial in that fundamental issues have had to be raised and discussed. [See
Dinsmore (2) for current state of debate; also Clark (33).] The central issue was the
representational capacity of ANNSs; as such, their critique is directly relevant to
present concerns. The essence of their argument was: (1) that ANNs are quintessen-
tially finite state devices, and as such that the only structure they can represent is
sequential ordering—that is, right (or alternatively, left) branching trees; (2) that to
model cognition in general and human language processing in particular, one needs a
much richer diversity of structures than finite state sequencing; and (3) that ANNs are
consequently inadequate by nature for modeling human cognitive abilities. Connec-
tionists generally accept the need for a diversity of structures, and so since 1988 the
search has been on to find ways in which ANNs might represent them, and thus to
refute Fodor and Pylyshyn’s arguments. We will look at what is in my view the most
~ promising approach: superpositional representation .

To understand superpositional representation, it is necessary to reexamine the
concept of compositionality already mentioned in connection with semantic theory.
The key work here is that of Van Gelder (34; also Van Gelder and Port, 35; critique in
Christiansen and Chater, 36), on which what follows is based. Van Gelder begins by
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extending the notion of compositionality beyond semantics: “In the most general (and
vague) sense, any item is said to have a compositional structure when it is built up, in a
systematic way, out of regular parts drawn from a certain determinate set; those parts
are then components or constituents of the item.” He then proceeds to focus this idea.
As a first step, general conditions that any compositional scheme must satisfy are
proposed.

» There is a set of primitive types (symbols, words, etc.) P;; for each type, there is available an
unbounded number of instances or tokens.

* There is a (possibly unbounded) set of expression types R;; likewise, for each type there is
available an unbounded number of tokens.

* There is a set of transitive and nonreflexive constituency relations over these primitive
expression types.

Before going on with the argument, some comments on “transitive and nonreflexive
constituency relations,” and on the type/token distinction, are in order. As regards the
first, transitive and nonreflexive can be ignored for present purposes; a constituency
relation is simply a specification of how parts in a compositional scheme can relate to

“one another, as in the production rules of the grammars we looked at earlier. A type is
an abstraction corresponding to the notion of intension in semantic theory, while a
token is a physical example—a member of the extension—of a type; there is the
concept “dog” (type) and there are actual dogs (tokens).

Now, the above conditions do not constitute a compositional scheme, but only state
the properties that any such proposed scheme must have. If one accepts these
conditions, then any actual compositional scheme one cares to propose has to do two
distinct things. First, the scheme has to be abstractly defined; that is, the primitive
symbol and expression types together with their constituency relations have to be
stated. Second, the representation of the abstract scheme has to be specified; that is,
how the token of the primitive symbol and expression types are going to be physically
represented. These two things are standardly collapsed into a single specification.
Consider a context-free PSG for a small fragment of English as an example of a
compositional scheme.

S — NP VP

NP - DET NOM
NOM — N PP
NOM — N

PP — PREP NP
VP - V NP

DET — the | a

N — man | woman | cat | dog
V — sees | bites | kicks | walks
PREP — in | on | with

The type and token specifications are as follows:

* The primitive symbol types are to be English words, and the corresponding tokens are to be
printed representations of English words. It may initially seem strange to regard words as
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abstracts, since they are so familiar in daily use. The common word for a household feline
can be represented as marks on a page (CAT), as acoustic waves when spoken, or as the
electronic register configurations that a computer assumes when the word is typed, among
many other possibilities. The physical instantiations of the word are very different, but a
single thing underlies them all: the abstraction, the concept, the word.

The expression types of English are to be such things as prepositions, noun phrases, and so
on, and the corresponding tokens are to be instantiated as uppercase printed labels. The
abstractness of notions such as “preposition” and “noun phrase” is manifest; there are no
noun phrases in the physical world. '

The abstract constituency relations are rules that specify that word categories and phrase
types can combine in various ways; noun phrases are followed by verb phrases, a preposi-
tional phrase consists of a preposition followed by a noun phrase, and so on. The
corresponding representation is a set of production rules consisting of tokens of word and
expression types. Constituency is represented by writing an expression token on the left,
and some combination of word and expression tokens on the right. The order of consti-
tuents is indicated by spatial concatenation of tokens on the right side; noun phrase
followed by verb phrase is physically represented by printing NP and then VP from left to
right; spatial concatenation is italicized because it is important in what follows.

Have separated out abstract and representational specification in a compositional
scheme, it can reasonably be supposed that, for any given abstract specification, there
is in principle more than one way to represent it. Specifically, van Gelder proposes
temporal superposition as an alternative to spatial concatenation as a way of represent-
ing ordering of constituents. (For further information on superposition see Van
Gelder, 37.) To get an intuition of the difference, consider two representations of the
sentence the man with the dog walks, which is generated by the above example CFG.
The printed one just given represents the sentence by placing one word after another
on a page; the words are spatially concatenated. But the sentence can also be
represented in speech, in which case the acoustic realization of one word follows
another not in space but in time; it is temporally superposed. (Note that they are not
temporally concatenated. Spoken words to not hang in the ether so that once the
utterance is complete they are all somehow available simultaneously. Rather, each
successive word is uttered, then fades away and is replaced by the next.) Temporal
superposition offers ANN research a way out of the representational inadequacy with
which Fodor and Pylyshyn have charged them. To see how, consider again the example
sentence just given. Its structure (according to the CFG that generated it) can be
represented as a tree diagram (see diagram top of page 34).

Alternatively, it can be represented as a bracketed expression.

S (NP(DET(the )NOM(N(man )PP(PREP(with )NP |
: (DET(the )NOM(N(dog))))VP(V(walks)))

In both representations of this complex structure, (1) the constituent tokens are
explicitly present, and (2) their relationship to one another in the structure is repre-
sented by spatial configuration. This is precisely the kind of representation that is
needed to support nontrivial compositional semantics, and to which ANNs are
unsuited, as Fodor and Pylyshyn have argued. ANNs are, however, capable of
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/S
\
NP VP
DET NOM Vv
/
N PP
/\
PREP NP
/\
DET NOM
N
the man with the dog walks

representing this kind of structure by temporal superposition, an example of which we
will now consider.

Pollack (38, 39) devised an elegant solution for representing complex tree struc-
tures in the hidden layer of a nonrecurrent ANN exactly like the one described earlier,
which he calls recursive autoassociative memory (RAAM). It depends on using such a
net as an autoassociator, which is simply a net in which the input and the target output
vectors are identical—the input is associated with itself.

VectorA = EII!EII!

Input
Vector A

Target oulpul
Vector A

Given an input vector and an identical target vector, back propagation is used to
train the net so that when the jnput vector is presented, it is reproduced on the output
layer. What is the point of this? Back propagation has the property that, for some 1/0
vector pairs, it automatically discovers a hidden layer configuration that encodes the
association. Here, because the input and output vectors are identical, and because the
number of hidden units is smaller than the number of I/O units, the configuration that
back propagation discovers for a given pair is a compressed encoding of the I/O vector.
Now, let us take a simple tree structure and see how it can be encoded in the hidden
layer of an autoassociator.
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Let each of the nonterminal symbols A, B, C, D be represented by a vector having,
say, k elements. Now take a net with 2k input ‘units, 2k output units, and £ hidden
units.

k-element | | k-element
symbol — |k Kl—  symbol

- vector vector
k-element k-element
symbol —b|k k symbol
vector | | a vector

The net is trained as follows:

* As input, present the A-vector to the top k input units, and the B-vector to the bottom k
units. As target output, use the A-vector for the top k output units, and the B-vector for the
bottom k units. In other words, autoassociate the terminals A and B of the tree to be
represented. Apply back propagation, and when training is complete take the hidden layer
configuration, label it R1, and save it for later use.

* Do exactly the same for C and D. Label the hidden layer configuration R2, and save it for
later use.

* Now take R1 and R2 and autoassociate them. When training is complete, label the hidden
layer configuration R3, and save it.

The claim is that R3 encodes the tree. How is this claim justified?

The trained net can function both as an encoder and as a decoder for the tree. To
encode, only the input and hidden layer are used. First input the AB vector pair; R1 is
generated in the hidden layer, and is saved. Then the CD vector pair is input, and R2 is
generated in the hidden layer; it too is saved. Finally, R1 and R2 are input, and R3 is
generated and saved. The claim is that R3 encodes the tree. If that is so, then it should
be possible to reconstruct the tree from R3. That is in fact possible. Take only the
hidden and output layers, and input the R3 that was previously saved. R1 and R2 are
generated in the output layer, and saved.*Now input R1, and the AB vectors are
generated in the output. Finally, input R2, and the CD vectors are generated in the
output. Since the means for encoding the tree in, and decoding the tree from, the
hidden layer are provided by the dynamics of the net, it can be concluded that the
hidden layer represents the tree.

Note, however, the two ways in which this ANN representation differs from the one
using spatial concatenation.
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* Spatial concatenation has all the constituent tokens physically present in the representa-
tion. The ANN representation does not. If one were visually to examine R1, R2, or R3 in
the hope of finding the A, B, C, and D vectors, one would be disappointed. A, B, C, and D
are not spatially there, but encoded in the R-vectors and recovered by the dynamics of the
net, that is, by the operation of the net over time.

The representation based on spatial concatenation represents the constituency relations of
the tree by deploying the tokens in space. The ANN representation represents the
constituency relations temporally; first AB is encoded into R1, then CD into R2, and finally
R1R2 into R3. Thus the term superpgsitional representation; the constituents are literally
superimposed on one another in the hidden layer, and are only recoverable by the network
dynamics.

Superpositional representation is, therefore, a viable alternative to spatially con-
catenative representation. Spatially concatenative representational schemes are
standard and therefore familiar, but there is no intrinsic reason to prefer them.
Superpositional representation is natural to ANNs, and opens the way to the repre-
sentation of complex structure necessary in NLP. In particular, it supports what Van
Gelder calls “functional compositionality”, in which compositionality is achieved not
by a spatially concatenated structure but by a representation manipulated by a
process: “We have functional compositionality where there are general, effective, and
reliable processes for (a) producing an expression given its constituents, and
(b) decomposing the expression back into those constituents.”

Pollack shows how a RAAM can encode much more complex tree structures than
the one just discussed, and furthermore can encode a multiplicity of trees. Other
researchers have, moreover, developed RAAMs along the lines discussed above
(Sharkey, 40; Blank, Meeden, and Marshall, 4/ ); and proposed variants on superposi-
tional representation, chief among these being Smolensky’s tensor product represen-
tation, 42—44; discussion in Van Gelder 37).

Representation of Lexical Meaning

In formal semantics the meaning of an expression is a function of the denotations of
its constituent primitive symbols, and of the way in which they are structured. We have
seen that ANNs have the capability of representing complex structures; it remains to
be considered whether and how denotations might be represented and associated with
linguistic symbols in ANNs.

In the conventional approach to constructing an NLP system with compositional
semantics, the system designer instantiates a formal semantic model, and in particular
specifies a language together with the world in which the semantics of that language is
to apply. This means that the designer both has to supply his system with all it knows
about that world—the range of gntities in it, their characteristics and properties, how
they interact with one another—and also to associate the words of the language in
question with these entities and their interrelationships. The system lacks any direct
contact with the world; it is, so to speak, blind, deaf, incapable of tactile sensation, and
entirely reliant on the designer’s description of the world for its semantics. By contrsat,
the ANN approach described here does not require the designer to specify a language
and a world of discourse. Instead, he or she places the system into a real-world
environment, provides it with a range of perceptual mechanisms, and relies on the
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learning capability of ANNs to (1) inductively infer the primitive symbols/words and
the syntax of the language in its environment, (2) inductively infer significant non-
linguistic regularities from the environment that will serve as the denotations for the
words of the language, and (3) associate words with their denotations. In other words,
the designer specifies a network architecture, provides an environment, and lets the
system learn its own syntax and semantics.

Let us look at a very simple example of how an ANN might learn to associate a word
with its denotation. Note that the aim here is to convey the essence of what is involved;
this example is not derived from any particular published research, nor is it intended as
a proposal for a workable system. Specifically, we want the net to learn a representa-
tion of the word table, and to associate it with a denotation; that is, with an intension
and an extension. The architecture is as follows: for clarity, far fewer units than would
actually be required are pictured:

Visual \

subnet —» — O%y

input \
Visual
transducer

Acoustic

subnet —» —» WO target output =
inout * W) input
Acoustic
transducer

The visual transducer is a device that takes light as input, and delivers a vector
encoding of it as output; it can be thought of as a suitably modified videorecorder.
Similarly, the acoustic transducer takes sound as input, and outputs a vector encoding;
it can be thought of as an enhanced microphone. How the translation into vectors
takes place is not crucial for the presgnt purposes. The network itself consists of two
autoassociator subnets, one for visual and one for acoustic input, and a third subnet
that links the other two so that the hidden layer of the visual subnet is its input layer,
and the hidden layer of the acoustic subnet is its output layer.

We assume as an environment a real-world room containing the above net. Various
tables are placed into the center of the room, one at a time, and the net’s visual
transducer is focused on the place at which each successive table stands. The tables
differ to varying degrees: big, small, round, square, rectangular, wood, chrome/plastic,
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ornate, simple, and so on. Once any given table is in place, the word table is uttered; on
each such occasion, the net goes through a learning cycle. For learning, the following
three things happen simultaneously:

* The visual transducer is activated. The resulting vector is input to the visual subnet, which
autoassociates it and develops a compressed representation of the input in its hidden layer,
as described previously.

* The acoustic transducer is activated. The resulting vector is input to the acoustic subnet,
which autoassociates it and develops a compressed representation of the input in its hidden
layer.

* The linking subnet associates the compressed representation of the visual input with the
compressed representation of the acoustic input, and represents the association in its
hidden layer.

- This cycle is repeated until the net is fully trained. Whether or not it is fully trained
is determined by a simple test. Every so often, bring the sequence of tables into the
room and activate the net, but do not utter table . For each table, the vector representa-
tion of table should appear in the output units of the acoustic subnet. If not, continue
the training.

Once fully trained, the net is tested. Because is is trained, we already know that
presentation of any of the training set tables will elicit the vector encoding of rable . But
there are two more possibilities.

* What happens if some other kind of entity in the room—a vase, a mirror—is presented to
the net? The answer is that because the net has not been trained to associate that entity with
anything, the output will be indeterminate.

What happens if a table that is not part of the training set, and that differs from all the
training tables to some degree, is presented? The answer here is that the output will be the
vector encoding of table. Why? It is a general property of this type of ANN architecture that
if a et is trained to associate a set of mutually similar input vectors with a single target
output, it will adjust its connections in such a way that all the inputs generate the same
hidden layer configuration. If a vector that is not ene of the input training vectors but that is
nevertheless similar to them is presented to the trained net, then that vector will generate
the target output even though the net had never been explicitly trained to make this
association. In other words, the net generalizes to novel inputs on the basis of its
experience. Now, the vectors representing tables in our room constitute such a mutually
similar input set, simply because from a purely visual point of view tables have certain
invariant features—a surface a more or less standard distance from the floor, legs, a
particular orientation to the room (not on the walls or ceiling), and so on—and these
features are captured by the visual part of our example net. They are all, moreover, mapped
onto a single output, table. Thus, shown a new table, the net uses its existing “knowledge” of
- tables and generalizes to it.

How does all this relate to ANNSs’ ability to represent denotations of symbols? Let
us take extension and intension separately.

The extension of a word in formal semantics is the set of real-world entites that the
word designates. In the current world of discourse—the table-room—the extension of
table is the set of tables on which the net was trained. Presentation of any member of
the extension set as input elicits the transducer’s encoding of table as output. Since
that encoding could be restored as the original acoustic signal using a transducer that
goes from vectors to sound waves, we can say that the net associates the set of tables
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with the word table. If, moreover, any other entity in the room is presented—a vase, a
mirror—the output is indeterminate, as noted. It follows that the net has learned to
represent the association of table with and only with its extension.

The intension of a word in formal semantics is a rule for determining membership in
the extension set. A representation of a word’s intension in an NLP system requires
that the system, given any arbitrary real-world entity as input, must be able to decide
whether that entity belongs to the word’s extension. We have just seen that the net
rejects any nontable input, and to this extent represents the intension of table. But is is
only to an extent. What if a table is presented that the net has never encountered
before, and that differs from those in the training set? We have also seen that the net
accepts the new table by assigning it to the extension of table. The net has, in short,
learned to represent the rule for determining membership in the extension set of fable,
and can therefore be said to have learned its intension.

There are numerous problems, both philosophical and practical, with this approach
to the representation of lexical meaning, and development of it has only begun. For
recent work within this general paradigm see Harnad (10), Plunkett et al. (45), and
Dorffner (46); for a critique see Christiansen and Chater (36).

Prospects

Conventional NLP is decisively top-down in the sense that it begins with syntactic
and semantic theories, and then implements (some aspect of) a given theory in a
conventional computer. One approach to ANN-based NLP is to regard ANNSs as an
alternative implementation medium. As we saw, this can have advantages over
conventional computer implementation in terms of resilience in the face of degraded
real-world input. As such, the ANN-as-implementation-medium approach has an
immediate technological application in the construction of NLP systems. In the longer
term, however, it seems clear—at least to me—that ANN NLP research will increas-
ingly be interested in bottom-up inference of linguistic knowledge from the real-world
environment. This means that future ANN NLP systems will be components of larger
systems that also include ANN-based sensory input/output components, and with
which they will interact (Pfeifer and Verschure, 47; Peschl, 48). The theoretical
framework for understanding such systems will, moreover, move away from formal
language and automata theory, and toward dynamical systems and complex systems
theory (Pollack, 17), but that is another story.
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