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HERMANN MOISL

University of Newcastle, Newcastle-upon-Tyne, England

1. INTRODUCTION

This introduction aims to provide a context for the chapters that comprise Part 3 of
the handbook. It is in two main sections. The first section introduces artificial neural
network (ANN) technology, and the second gives an overview of NLP-specific
issues.

The quantity of research into the theory and application of ANNs has grown
very rapidly over the past two decades or so, and there is no prospect of being able to
deal exhaustively either with ANN technology or with ANN-based NLP in a rela-
tively few pages. The discussion is therefore selective. Specifically,

1. The introduction to ANN technology makes no attempt to survey the
current state of knowledge about ANNS, but confines itself to presentation
of fundamental ANN concepts and mathematical tools.

2. The overview of ANN-based NLP surveys the historical development of
the subject and identifies important current issues. It does not, however, go
into detail on specific techniues or systems; such detail is provided by the
chapters that follow. What is important in any research area is to some
extent subjective, but the topics chosen for inclusion are well represented in
the literature.

Citation of the relevant research literature is also necessarily selective, because
it is, by now, very extensive. In general, the aim has been to provide a representative
sample of references on any given topic.
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2. ANN TECHNOLOGY

There are numerous general textbooks on ANNs [Refs. 7,23,26,36,114,124,160,164,
278,281 are a representative selection]. The appearance of the Parallel Distributed
Processing volumes [281] sparked off the current wave of interest in ANNSs, and they
are still an excellent introduction to the subject; there is also a clear and very acces-
sible account [[60]; see Chap. 3]. Further information on what follows is available
from these and other textbooks. ‘

The quintessential neural network is the biological brain. As the name indi-
cates, an artificial neural network is a man-made device that emulates the physical
structure and dynamics of biological brains to some degree of approximation. The
closeness of the approximation generally reflects the designer’s motivations—a com-
putational neuroscientist aiming to model some aspect of brain structure or beha-
viour will, for example, strive for greater biological fidelity than an engineer looking
for maximum computational efficiency—but all ANNs have at least this much in
common:

e Structurally, they consist of more or less numerous interconnected artificial
neurons, also called “‘nodes’ or “units.”

e They communicate with an environment by means of designated input and
output units.

e Signals received at the input units are propagated to the remaining units
through the interconnections and reappear, usually transformed in some
way, at the output units.

Figure 1 shows a generic ANN; here the circles represent the units, and the arrows
directional connections between units. The generic ANN is rarely if ever used in
practice, but numerous variations on it have been developed; more is said about this
later in the chapter. X

Many researchers argue that, although biological brain structure need not,
and in practice usually does not, constrain ANN architecture except in the most
general terms just listed, what is known of brain structure should inform develop-
ment and application of ANN architectures, for two main reasons. Firstly, it can
be productive of new ideas for ANN design, and secondly, because the human
brain is the only device known to be capable of implementing cognitive functions,
it is sensible to emulate it as closely as possible [1E 9, 218]. The case for this is
unanswerable, but in view of the space limitations of this handbook there is simply
no room for anything beyond a brief synopsis of ANN technology. (The reader
who wants an accessible path into the (voluminous) literature on brain science is
referred to [9] and [60].) '

A. Architecture

Here, ANN architecture is taken to mean the combination of its topology, that is,
the physical layout and behavioural characteristics of its components, and its learn-
ing mechanism. Topology and learning are discussed separately.
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Fig. 1 A generic ANN.

1. Topology

This subsection develops the generic net mentioned earlier. It first of all looks more
closely at the generic net, and then considers restrictions on its topology and the
effects of these restrictions on network behaviour.

a. Generic ANN Characteristics

The generic net is a physical device.

It consists of units and interconnections among units.

The units are partitioned into three types: input units that receive signals
from an environment, output units that make signals available to an envir-
onment, and “hidden” units that are internal to the net and not directly
accessible from outside. :

Each unit has at least one and typically many connections through which it
receives signals. The aggregate of these signals at any time ¢ elicits a
response from the unit that, in the case of input and hidden units, is pro-
pagated along all outgoing connections to other units in the net, and in the
case of output units is made available to the environment.

Units can be of different types in the sense that they may respond differ-
ently to their inputs.

Any given connection between units may be more or less efficient in trans-
mitting signals; this relative efficiency is referred to as ‘“‘connection
strength.”” There is typically a significant variation in strength among the
connections in a net.

Signals applied at the input units are propagated throughout the net via
connections and emerge at the output units, usually transformed in some
way. The transformation of the input signals, and therefore the response of
the net to environmental signals in general, is conditioned by the nature of
the constituent units’ response to incoming signals, the pattern of intercon-
nection among units together with the strengths of those connections, and
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the processing dynamics; more is said of processing dynamics later in the
chapter.

b. Restrictions on the Generic Net

As noted, the generic net is never used in practice. Instead, restrictions are imposed
on aspects of network topology, and these restrictions crucially affect network beha-
viour:

UNIT RESPONSE. A single unit in the generic net has some number of incoming
connections. Designate the unit as », the number of incoming connections as k, the
strength of any given incoming connection i as w; (where w = “weight’’), and the unit
output as o. Signals s; are applied to each of the w; at some time ¢. Then the total
input to nis ) | s;w;; that is, each signal is multiplied by the corresponding weight to
determine how strongly it will be propagated to n, and n sums the signals thus
weighted. This sum is then transformed into an output signal o as some function
- of the inputs: o = f (Z'f s;w;), as shown in Fig. 2. The output function f may be
linear, so that ZII‘ s;w; is increased or decreased by some constant amount or simply
output unaltered; a net consisting of units with such a linear output function can
implement only a restricted range of input—output behaviours. Alternatively, ' may
be nonlinear. There is an arbitrary number of possible nonlinear functions that
might be applied, but in practice the nonlinearity is restricted to the binary step
function and approximations of it. The binary step function says that if Z'f SiW;
exceeds some specified threshold the unit outputs a signal, usually represented as
1, and if it does not exceed the threshold it fails to respond, where failure is typically
represented as 0. Continuous approximations of the binary step function such as the
frequently used logistic sigmoid f(x) = 1/1 + e " (where x = Zlf s;w;) are S-shaped.
Here, the unit response to Zlf s;w; is not restricted to binary values, but can take real
values in some interal, most often 0..1 or —1..1.

NUMBER OF UNITS. The number of input and output units of an ANN is deter-
mined by the dimensionality of the input and output data: n-dimensional input data
requires »n input units, one for each dimension, and so also for outputs, where n =
1,2.... There is no limit in principle on 7, but there are practical limits, the most
important of which is that, as the dimensionality grows, network training becomes

5 —1 W
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Fig. 2 A single ANN unit.
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more and more time-consuming and, eventually, intractable for commonly used
ANN architectures. It is, therefore, important to keep the dimensionality as small
as possible consistent with the need to preserve essential application-specific inform-
taion; various ways of preprocessing data to achieve information-preserving data
dimensionality reduction have been developed (see below).

The number of hidden units required for a net to learn a given data set and
then generalize acceptably well is one of the most researched issues in the theory and
application of ANNSs. Theoretical and empirical results have consistently shown
that, as the size of the data set that the ANN is required to learn grows, so the
number of hidden units must increase. However, there is still no reliable way to
determine with any precision how many hidden units are required in a particular
application. The traditional approach has been heuristic search: try a variety of
hidden unit sizes, and use the one that works best. Several more principled and
efficient approaches to determining the optimum number of hidden units have
since been developed. Again, more is said about this later.

CONNECTIVITY. In the generic net the units are arbitrarily interconnected. Such
a topology is rarely if ever used. Instead, some systematic restriction is typically
imposed on connectivity. Some of the connections in the generic net can be removed,
as in Fig. 3. The units can then be arranged so that all the input units form a group,
all the units connected to the input units form another group, all the units connected
to the second group form a third group, and so on, as shown in Fig. 4. A layered
structure has emerged, based on connectivity. Such layering is a fundamental con-
cept in ANN design, and it raises important issues.

How many layers should a net have?

In the literature, some authors count layers of units and others count layers of
connections. The latter is in the ascendant, for good reason, and we adopt that
convention here.

A net can have any number of layers, but for economy of design and processing
efficiency the aim is to have as few as possible. The single-layer net is maximally

Input

Input

.v‘ ‘

Fig. 3 Generic ANN with connections selectively removed.
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Fig. 4 Rearrangement of Fig. 3 into a layered structure.

simple. Early ANNs were single-layered, and they are still used in certain applica-
tions, but there are input—output behaviours that no single layer net can implement
[229]. Two-layer nets can overcome this restriction; in fact, for any input-output
behaviour that a net with more than two layers can implement, there is always a two-
layer net than implements the same behaviour. In theory, therefore, more than two
layers are never required, but in practice it may be convenient or even necessary to
use more than two.

What should the pattern of connectivity between layers be?

In the foregoing layered modification of the generic net, all the connections
point in the same direction, so that input signals are propagated from the inputs
units through intermediate layers of units to the output units. ANNs with this
arrangement of connections are called feedforward nets. Feedback connections are
also possible, however. Assume a two-layer net, that is, one with three layers of units
labelled i, j, k, as depicted in Fig. 5. Here, in addition to the connections between
layers i, and j, k, there are connections from layer j back to layer i, so that outputs
from the units in layer j are propagated not just to layer &, but also become input to
layer i. An ANN with one or more feedback connections is called a recurrent net.

Feedforward and recurrent nets differ in how they process inputs. To see the
difference, assume an encoding scheme in which each alphabetic character and each
digit 0..9 is assigned a unique binary representation. Assume also a net that outputs
the representation of 1 if an input string consists entirely of alphabetic characters,
and the representation of 0 otherwise. Now input (the encoding of) the string abc to a
feedforward net, as in Fig. 6. The signal is applied to the input units, and the
corresponding signal emerges at the output units. In a physical net there would
necessarily be a small propagation delay, but this is routinely disregarded in practice:
the input-output behaviour of a feedforward net is taken to be instantaneous. A
recurrent net, on the other hand, processes input sequentially over continuous time

Input

Output

Fig. 5 A layered ANN with feedback connections.
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Fig. 6 A feedforward ANN for string processing.

or in discrete time steps, as in Fig. 7. Assuming discrete time at 7 input to the net is
the representation of a together with the initialized outputs of the layer j units fed
back by the recurrent connections. This generates output in layer j which, together
with b, is input at time #;, and so on to the end of the string. Because speech and
NL text are inherently sequential, recurrent nets are important in ANN-based
NLP. Figure 7 shows a frequently used feedback topology, but various others
are possible. These varieties, and issues such as higher-order feedback connections,
are discussed in the cited textbooks.

The two ANN topographies most frequently used in NLP work are the two-
layer feedforward net, with sigmoid hidden unit activation function known as the
multilayer perceptron (MLP), and the MLP with feedback connections from the
hidden units back to the input, known as the simple recurrent network or SRN.
Both of these are exemplified in the foregoing. Various other topologies, such as

Kohonen and radial basis function nets, are also extensively used, however [see e.g.,
114].

2. Learning

There is no necessary connection between ANNs and learning. It is possible to
configure the connections in an ANN manually in such a way as to give it some
desired behaviour [i.e., 121,122,246]. Learning capability is, however, probably the
single most attractive aspect of ANNs for reserachers, and the overwhelming major-
ity of ANN-based work uses it.
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Fig. 7 A recurrent ANN for string processing.

Given a sufficiently complex net, that is, one with enough hidden units, the aim
of ANN learning is to find a set of connection weights that will allow the net to
implement some desired behaviour. An ANN learns by adjusting its connection
strengths in response to signals from an environment such that, once training is
deemed to be complete by the designer, the net responds in predictable ways to
signals that it encountered in the course of training, and in reasonable ways to
signals that it did not encounter during training, where the designer is the judge of
what is reasonable. Such learning assumes a broadly stationary environment. For
example, a net that is to function as a speech processor is trained on speech signals
for which the probability distribution does not change significantly over time. Once
trained, the net is expected to behave reasonably in response to novel speech input
from the same distribution, but not to, say, visual signals, which bear no systematic
relation to speech.

ANN learning mechanisms are standardly categorized into supervised and
unsupervised algorithms:

1. A supervised learning algorithm requires predefinition of a training set of
(input, target output) signal pairs: for each input, the net must learn to
output the target signal. In other words, the net is taught a prespecified
input-output behaviour. The essence of supervised learning is as follows.
The input component of a training pair is presented at the input units of
the ANN. The signal is propagated through the net, and the response that
emerges at the output units is compared with the target output component
of the training pair. If the target and actual outputs correspond within
tolerances, no change is made to the network weights. Otherwise, the
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weights are adjusted in a way such that they decrease the difference
between the actual response and the target output the next time the
input in question is presented. This adjustment process continues incre-
mentally until actual and target outputs coincide. How exactly the appro-
priate weight adjustments are made is the province of the various available
ANN learning algorithms. By far the most popular of these is back-pro-
pagation, which was introduced in its present form by Rumelhart and
McClelland in 1986 [281], since which time numerous modifications and
extensions have been proposed. Back-propagation is described in numer-
ous places, including the textbooks cited at the outset of this section; a
good introductory account is given [108].

2. An unsupervised learning algorithm does not use target outputs, and the net
thus does not learn a prespecified input-output behaviour. Rather, an
ANN is presented with inputs and expected to self-organize in response
to regularities in the training set without external guidance, such that the
learned response is in some sense interesting or useful. A Kohonen net, for
example, is a single layer feedforward topology the input units of which are
connected to a two-dimensional grid of output units, as shown in Fig. 8.
Given a training set of n-dimensional vectors, the Kohonen learning algo-
rithm adjusts the connections so that the distance among the training
vectors in n-dimensional space is reflected in unit activation in two-dimen-
sional output space: once a Kohonen net is trained, each input vector is
associated with a particular region of output unit activation, and the dis-
tance among regions is proportional to the distance among inputs in vector
space. The result is called a topographic map. No target output is involved:
the Kohonen learning algorithm allows the net to self-organize.

B. Mathematical Modelling

The foregoing discussion has tried to give an account of ANNSs as physical devices
that can be trained to display interesting physical behaviours. An intuitive under-
standing of ANNSs at this level is useful for most people, but it is not sufficient. The
limitations become apparent as one works with ANNs and has to confront a range
of design and analysis issues. Which ANN architecture is appropriate for a given
application? How much data is required? How large does the net have to be? How

Fig. 8 A Kohonen net.
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long will training take? Once trained, how can the net’s behaviour be understood?
One can approach these and other issues experimentally, but that is at best ineffi-
cient. The alternative is to model ANNs mathematically, and then to apply estab-
lished mathematical methods to the models in addressing matters of design and
analysis [103,317]. The latter approach is now standard; some essentials are outlined
in what follows.

To undertake mathematical modelling,. physical nets have to be represented as
mathematical objects. Linear algebra is fundamental in this:

e Assemblies of input, hidden, and output units are represented as vectors the
components of which take numerical values, so that the ith unit activation
in an n-unit assembly corresponds to the ith element in a vector of length .

e Connections between an m-unit and an n-unit assembly are represented as a
two-dimensional m x n matrix, and numerical matrix values represent con-
nection strengths: the value in cell m;n; represents the connection strength
between the ith unit in assembly m and the jth unit in assembly #.

e In the evaluation of a unit output o = f (21]( s;w;), the calculation of the sum
in brackets is represented by the inner product of the input vector s and the
corresponding row of the weight matrix w.

There are currently three main approaches to mathematical modelling of
ANNSs: as dynamical systems, as computational systems, and as statistical algo-
rithms [317]. We look briefly at each.

1. ANNs as Dynamical Systems

A physical system that changes over some time span is a physical dynamical system
[9,38,88,140,165,166,243,244,310,317,346,361]. Dynamical systems theory is the
branch of mathematics that studies the long-term behaviour of physical dynamical
systems; this is done by constructing mathematical models of physical systems, and
then analyzing the properties of the models.

Analysis of ANNs as dynamical systems generally uses state-space modelling,
the key concepts of which are:

a. State Space

A state space is an n-dimensional euclidean or noneuclidean space. Assuming the
former, the dimensionality of the space is determined by the number of variables in
the model: n variables determine an n-dimensional space, where each orthogonal axis
measures a different variable. Let x|, x», ... X, be variables of some model M. Then
the vector of variable values x,(z), x,(¢), ..., x,(¢) is the state of M at time . Now
assume an initial state at time #, and plot the state vector in state space as the system
changes for 7 > 0. The result is a trajectory in state space that represents the state
evolution of the model. If this is repeated for a large number of initial states, the
result is a collection of state trajectories called a phase portrait.

b. Invariant Manifolds

A manifold is a k-dimensional region in n-dimensional space, where k is strictly
smaller than »n. In a dynamical system model, the n-dimensional volume defined
by the vector of initial values collapses onto a smaller-dimensional volume or mani-
fold as the system evolves over time. The manifold to which the system evolves from
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a given starting condition is called an invariant manifold or attractor. Typically,
more than one initial vector will collapse onto the same manifold; the set of vectors
that evolve onto a given manifold is called the manifold’s basin of attraction.
Invariant manifolds thereby define subspaces of state space to which trajectories
evolve, and within which they remain, for specific initial conditions.

There are various types of manifold. The simplest is the fixed-point attractor, a
0-dimensional manifold that represents a physical system that evolves to, and in the
absence of disturbance remains in, a fixed and inchanging state; the classic example is
a pendulum, which eventually comes to rest:and remains so unless moved. Limit
cycles are trajectories that loop back on themselves, and represent oscillatory motion
in the physical system being modelled. In addition, more complex attractors are
possible, including fractal and chaotic ones.

Invariant manifolds may or may not be stable when the system has settled
down and is subsequently disturbed. If the system settles back down to the predis-
turbance attractor, the manifold is stable. The state may, however, move away from
the attractor as a result of the disturbance and go to another attractor in the state
space.

A general dynamical system model is a triple M = (S, T, f), where S is a state
space, T is a temporal domain, and /' = S x T — S is a state transition function that
describes how the state of the model evolves over time. Depending on how S, T, and
f are defined, dynamical models can be subcategorized in various ways. S can, for
example, be a continuous or discrete state space; T can be continuous or discrete
time; / can be linear or nonlinear. In addition, the model can be autonomous or
nonautonomous. For the last of these, dynamical systems theory draws a distinction
between modelling a physical system’s intrinsic behaviour, and modelling the effect
which an external environment has on the system; such environmental influences are
called inputs. In an autonomous system the effects of inputs are not modelled,
whereas they are for nonautonomous systems. An autonomous system is started
with known initial state values and then allowed to evolve over time without inter-
action with an environment, that is, without input. In many applications, however,
nonautonomous systems are more interesting because the physical systems being
modelled are generally subject to environmental influences.

There are two sorts of ANN dynamical systems to consider: activation
dynamics and weight dynamics. For activation dynamics, assume a net containing
n units. These n units are the state variables of the activation dynamical system, and
the state of the system at time ¢ is the vector of unit activation values uy, u,, ... u,. If
the weights and initial conditions or input are held constant, the evolution of the unit
activation vector is the activation dynamics of the net. The state space of the weight
dynamics, on the other hand, is the space of weight matrices, the dimension of which
is that of the number of trainable weights in the net. Given some initial weight matrix
W, the weight -dynamics is the evolution of W as the net is trained using a learning
algorithm. The key issue in weight dynamics is convergence to a point attractor, that
is, for the weights to evolve so that they stop changing, as this indicates that learning
is complete. The activation dynamics of various types of ANN exhibit the range of
long-term behaviours characteristic of dynamic systems, from fixed-point to chaotic.
The aim in most applications is to have the activation dynamics converge to point
attractors, but not invariably; for example, there is some work that exploits fractal
dynamics for NLP.
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2. ANNs as Computational Systems

Given arbitrary sets A and B, a function f is a subset S of the Cartesian product A x
B such that, for each pair (a,b) € S, a € A is a uniquely associated with b € B. An
algorithm is said to compute f if, given the first component a of a pair (a, b) € S, it
returns the second component b, that is, if it generates the set of pairs that constitutes
f. Now, if the physical inputs and outputs of a net N are interpreted as A and B, and
if N’s physical input—output behaviour is consistent with S under that interpretation,
then N can be seen as an algorithm for computing f, that is, as a computational
system [for discussions of computation see Ref. 60, Chap. 3, and the journal Minds
and Machines 1994; 4:377-488].

a. Computability

Computability in standard automata theory studies the classes of function that can
be computed by various types of automata. The corresponding study of ANN com-
putability does the same for various types of ANN topology [120,278,317]. The key
results thus far for present purposes are as follows:

1. Under unboundedness assumptions analogous to those made in automata
theory, certain ANN topologies have been shown to be Turing-equivalent,
that is, for any function that a Turing Machine computes, there is an ANN
with one of these topologies that computes the same function, and vice
versa. These topologies include some of the most frequently used types of
net [see survey in Ref. 285]: multilayer perceptrons with any one of a broad
class of nonlinear hidden-layer activation functions, including the more or
less standard sigmoid [372,373, reprinted in Ref. 374], radial basis function
networks [137], and recurrent networks [308; but see Ref. 321]. Single-layer
feedforward nets, on the other hand, are known not to be Turing-equiva-
lent: there are some functions that no such net can compute [i.e., 26].

2. ANN:s that are bounded in terms of the number of units or the precision of
connection strengths are computationally equivalent to finite-state auto-
mata. Because all physically implemented ANNSs are necessarily bounded,
they are all limited to finite state computational power. This does not
compromise ANNSs relative to automata; however, because the same
applies to the latter—every implemented Turing Machine is equivalent
to a finite-state machine. In real-world applications automata are given
sufficient memory resources to compute the finite subset of the required
function in practice, whereas ANNs are given more units or higher-resolu-
tion connections to achieve the same end.

These results say only that, for some function f, there exists an ANN topology and a
set of connections that compute f. There is no implication that the requisite set of
connections can be learned with a net of tractable size, or within a reasonable time;
see further discussion in what follows.

b. Computational Complexity of Learning

Every computation has time and space resource requirements, and these vary from
algorithm to algorithm. Computational complexity theory [353] studies both the
relative resource requirements of different classes of algorithm for a given function,
and also the rate at which resource requirements increase as the size of particular
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instances of the function being computed grows, where “‘size”” can be informally
understood as the amount of input data needed to describe any particular instance
of a function, or, more formally, as the number of n of bits used to encode the input
data. As n increases, so do the resource requirements. The question is how quickly
they increase relative to n—linearly, say, or polynomially. If the increase is too rapid,
the function becomes intractable to compute within reasonable time or space
bounds.

Computational complexity theory has a direct and important application to
ANN learning [5,31,36,81,187,188,278,317]: the problem of scaling. Given some
ANN topography, the aim of learning is to find a set of connection weights that
will allow the net to compute some function of interest; the size of the problem is the
number of weights or free parameters in the net. The number of weights in a net is a
function of the number of input, output, and hidden units, which, as we have seen,
are determined by the data-encoding scheme adopted in any given application, and
the size of the data set that the net is required to learn. As the number of parameters
used to encode the data or the number of data items increases, therefore, so does the
number of connections. Now, empirical results have repeatedly shown that the time
required to train an ANN increases rapidly with the number of network connections,
or network complexity, and fairly quickly becomes impractically long. The question
of how ANN learning scales with network complexity, therefore is, crucial to the
development of large nets for real-world applications. For several commonly used
classes of ANN, the answer is that learning is an NP-complete or intractable pro-
blem—We cannot hope to build connectionist networks that will reliably learn simple
supervised learnng tasks [187].

This result appears to bode ill for prospects of scaling ANNSs to large, real-
world applications. It is all very well to know that, in theory, ANNs with suitable
topologies and sufficient complexity can implement any computable function, but
this is of little help if it takes an impractically long time to train them. The situation
is not nearly as bad as it seems, however. The intractability result is maximally
general in that it holds for all data sets and all ANN topologies. However theore-
tically interesting, such generality is unnecessary in practice [19], and a variety of
measures exist that constrain the learning problem such that intractability is either
delayed or circumvented; these include the following [23,26,271]:

e Restricting the range ANN topologies used [187,278].

e Developing mechanisms for determining the optimal network complexity
for any given learning problem, such as network growing and pruning
algorithms [26,364].

e Biasing the net toward the data to be learned. Empirical evidence has
shown that biasing network topology in this way can substantially speed
up learning, or even permit data to be loaded into a fixed-size net which,
without biasing, could not load the data at all [33,106]. Such biasing
involves incorporation of prior knowledge about the problem domain
into the net in various ways [80,122,183,245,345].

e Explicit compilation of knowledge into initial network weights
[121,134,246,248,249].

e Preprocessing of inputs by feature extraction, where the features extracted
reflect the designer’s knowledge of their importance relative to the problem.
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Feature extraction also normally involves reduction of the number of vari-
ables used to represent the data and, thereby, the number of input units,
with consequent reduction in network complexity [23,26,114].

e Incremental training, during which the net is trained with data that is
simple initially, and that increases in complexity as learning proceeds
[64,65,106].

e Transfer: the weights of a net N; to be trained are initialized using weights
from another net N, that has already been successfully trained on a related
problem [128,269,302,337-340].

c. Automata Induction

From a computational point of view, the activation dynamics of a feedforward net
are of no interest because, for a given initial condition or input, it always converges
‘to the same point attractor. The dynamics of feedforward nets, therefore, are dis-
regarded for computational purposes, and the input—output mapping is taken to be
instantaneous. The dynamics of recurrent ANNs (RANNS) are on the other hand of
considerable computational interest, because the state space trajectory of a RANN
in response to a sequence of input signals is computationally interpretable as the
state transitions of an automaton in response to an input symbol string, and as such
the dynamics of a RANN in response to a set of input signal sequences is interpre-
table as an automaton processing a language L. If the dynamics are learned from
input-output data rather than explicitly compiled into the net, moreover, the
RANN, from a computational point of view, can be taken to have approximated
an automaton that defines L or, equivalently, to have inferred the corresponding
grammar. RANNSs are therefore amenable to analysis in terms of a well-developed
formal language and automata theory [39,318,342,354].

Since the mid-1980s there has been a good deal of work on the use of RANNs
for grammatical inference [4,130-136,142,185,221,246-248,266,297,298,362,379,380].
The training of a Simple Recurrent Network (SRN) as a finite-state acceptor is
paradigmatic: given a language L and a finite set T of pairs (a, b), where a is a
symbol string and b is a boolean that is true if @ € L and false otherwise, train an
SRN to approximate a finite-state acceptor for L from a proper subset T’ of T.
The SRN, like various other RANN topologies used for grammatical inference, is
a discrete-time, continuous-space dynamical system. To extract discrete computa-
tional states, the continuous ANN state space is partitioned into equivalence
classes using, for example, statistical clustering algorithms based on vector dis-
tance, and each cluster is interpreted as a single computational state
[39,132,142,250,341,362; sce also Ref. 81]. Any finite state machine extracted in
this way is a possible computational interpretation of the RANN, but it is not
unique, because the number of states extracted depends on the granularity of the
continuous space partitioning and on the partitioning algorithm used [94,95].

Grammatical inference using RANNS is not without its problems. The most
important of these are the following:

1. A RANN can be interpreted as a finite-state automaton. Nevertheless, it
remains a dynamical system that approximates, but does not implement,
the automaton in the strict sense of implementation. For short strings the
approximation is usually quite close, but as string length increases,
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instabilities in the network dynamics can cause the net’s behaviour to
diverge from that of the abstracted machine [39,142,193-195].

2. There can be systematic dependencies between symbols that occur at dif-
ferent sequential positions in strings; subject—verb number agreement in
English is an example. A problem with using RANNs for grammatical
inference has been that, as the sequential distance between lexical items
in a dependency pair increases, so does the difficulty of learning the depen-
dency [22,23]. An SRN processes an input string a;, @, . . ., a, sequentially,
and represents the lexical processinghistory up to any given symbol a; in
state S;; that is, in the configuration of hidden layer units when g; is the
current input. Assume now that there is a dependeny between a; and g;
later in the string. When processing arrives at g;, the farther back in the
sequence «; is, the weaker its representation in S; untll the resolution in the
hidden units is insufficient to retain a memory of the net’s having seen a;
and the dependency is lost. A variety of solutions have been proposed
[102,168,214,248,254,291,360].

3. Theoretically, grammatical inference is an intractable problem. Gold [138]
showed that even the simplext class of languages, the regular languages,
cannot be learned in reasonable time from a finite set of positive examples.
On this basis one might assume that, whatever its successes relative to
particular and usually quite small or simple languages, general RANN-
based grammatical inference is hopeless. That would be an overinterpreta-
tion, however. In practice, there are measures that render grammatical
inference tractable, such as provision of negative as well as positive exam-
ples, or incorporation of prior knowledge of the grammar to be inferred
into the learning mechanisms [52,108,215].

Work on grammatical inference is not confined to finite-state acceptors or indeed to
more general finite-state machines. Pushdown automata and Turing machines have
also been inferred [78-80,327,376,380]. Chapter 29 prov1des a detailed discussion of
grammatical inference and automata induction.

3. ANNs as Statistical Algorithms

Inferential statistics and ANN learning both discover regularities in data and model
the processes that generate that data. It is not, therefore, surprising that ANNs are
now seen as one approach to statistical modelling [6,26-28,48,186,277,278,284,317,
358,375]; ANNs are in essence statistical devices for inductive inference [364]. For
present purposes, the most important aspect of ANN-based statistical modelling is
regression analysis. Given a set of independent variables xi, x,, ..., X,, for example
the various factors affecting computer network loading, and a dependent variable y,
for example, the average length of time it takes for any given user to obtain a
response at some level of loading, regression analysis aims to infer the relation
between independent and dependent variables from a sample data set of (indepen-
dent variable, dependent variable) value pairs. The inferred relation is intended as a
model for the system that generated the data: it is taken to describe the relation
between independent and dependent variable values not only for the sample data set,
but also for the population as a whole. For example, assuming the case in which
there is only one independent and one dependent variable, data plotted on x, y axes
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might look like (a) or (b) in Fig. 9. For (a), it is clear that the relation between
independent and dependent variables is basically linear, and as such, the general
form for a suitable model would be a linear polynomial ¥ = ay + o x', where the
«; are constants chosen so that the line that the resulting expression describes best fits
the data, and where “best” is usually defined as the line for which the sum of the
squared distances from itself to each data point is a minimum. This is the regression
line. The line does not pass through all or even many of the data points; there is a
random scatter on either side. The relation between independent and dependent
variables that the regression line dnd the corresponding polynomial model is thus
probabilistic: the value the model predicts for y given some x not in the data set is the
mean of a random scatter to either side of y, as in Fig. 9. Similarly, the shape of (b)
suggests a quadratic polynomial of the general form polynomial ¥ = ag + apx!
+ a2x2 as a suitable model, where, again, the values chosen for the parameters are
such that the resulting expression describes the line of best fit through the data.

To see how ANNSs can be used as regression models, we concentrate on the
best-studied topology: the two-layer feedforward MLP with sigmoid activation hid-
den units and real-valued output. The input layer corresponds to the independent
variables, the output layer to the dependent variable(s), the network weights to the
parameters «;, and the training set of (input, target output) pairs to the (independent
variable, dependent variable) data set. ANN learning then becomes an algorithm for
determining the parameters in the expression for the regression line through the data
or, in other words, a statistical method for function approximation. The resulting
model takes the form not of a multivariate polynomial, but of an artificial neural
network.

As noted, a conventional (i.e., non-ANN) statistical model must represent not
only the relations between independent and dependent variables for the data sample
on which it is based, but also for the population from which the sample was drawn.
The same is true of ANN-based regression models: loading is not enough. For
loading, all that is required is that a net learn a given set T of data pairs, such
that, when the first element of a pair (a,5) € D is input to the loaded net, the
corresponding second element is output. But, in almost all applications, the net is
expected to generalize. Given a population D of (input, target output) pairs and a
proper subset T of D as a training set, then if T is successfully loaded, the expectation
is that for every pair (a;, b;) € D and ¢ T, a; input to the net will output b; within
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Fig. 9 Linear and quadratic relations between independent and dependent variables.
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required tolerances. The generalization property of ANNs is much cited in the
literature, but it is by no means automatic. To design a net that generalizes well,
the relation between network complexity—the number of connections in the net
and the size of the training data set has to be understood.

Given a training data set, how complex does the net that learns that data need
to be for adequate generalization? A net that is either too complex or not complex
enough will fail to generalize adequately. To see why this is so, we consider once
again a univariate data set and fit three different regression lines to it, as in Fig. 10.

The first regression line corresponds to some linear polynomial y = a + oy x!,
the second to some cubic polynomial y = oy + o x! + a2x2 + a3x3 and the third to
some higher-order polynomial y = oy + apx! + a2x2 + ...+ a,x". The linear curve
fits the data poorly, the cubic one fits the general trend of the data, but actually
passes through only a few points, and the higher-order one gives the best fit in that it
passes through each point exactly. The linear expression is clearly not a good model
for the data. Surprisingly, however, neither is the higher-order one; the best of them
is the cubic curve. Consider what happens for some value of x not in the sample. The
cubic polynomialfeturns the corresponding y value on the regression curve, and it is
consistent with the random scatter of data points around the curve; that is, the model
has predicted a y value in response to x that is in the same distribution as the sample
data. Under identical circumstances, the higher-order polynomial may return a y
value that is relatively far from the sample data points, and thus does not predict a y
value in the same distribution as the sample. The problem is that the higher-order
polynomial has fit the sample data too exactly and thus failed to model the popula-
tion well. In short, given a data set, there is an optimal number of terms in the
polynomial for regression modelling. In ANN terms, this corresponds to network
complexity: too complex a net overfits the data, whereas a net that is not complex
enough undefits it, similar to the foregoing linear polynomial. It also goes without
saying that it is not only the size of the data set that is important, but also the
distribution of the samples. Even a large number of data points will not result in
good generalization if, for example, they are all clustered in one isolated region of the
population distribution. Training data must be chosen in such a way that it repre-
sents the population data distribution well.

The results of theoretical work on the interrelation of network complexity, data
set size, and generalization capability [19,26,173,175,375] have, in practical terms,
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Fig. 10 Three different fits to a data distribution.
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yielded a rule of thumb: good generalization is attained when the number of weights
in the net is small compared with the number of data items in the training set.
Experimental results, however, have shown that good generalization can be achieved
with more complex nets or, equivalently, fewer data than this rule of thumb would
indicate; clearly, additional factors, such as the nature of the function being approxi-
mated and the characteristics of the learning algorithm, are also involved [208,209].

In practical terms, determination of network complexity for a given data set
has historically been a matter of trial and error, and to a large extent remains so: try
nets of varying complexity, and use the one that generalizes best. More principled
approaches have been developed, however, such as algorithms that increase or
decrease the number of connections in the course of network training, with the
aim of thereby arriving at an optimum topology; these and other methods are
reviewed [26,271].

3. ANN-BASEDNLP

This section is in two main parts. The first outlines the motivation for using ANN
technology in NLP, and the second gives an overview of the history and current state
of ANN-based NLP.

A. Motivation

In general, a new technology is adopted by a research community when it offers
substantial advantages over what is currently available, and any associated draw-
backs do not outweigh those advantages. NLP has, from the outset, been dominated
by a technology based on explicit design of algorithms for computing functions of
interest, henceforth called ““‘symbolic NLP” for reasons that will emerge, and imple-
mentation of those algorithms using serial computers. It is only since the early 1980s
that alternative technologies have become available, one of which is ANNs. In what
follows we look at the main advantages and disadvantages of ANNs relative to
symbolic NLP.

1. Advantages

Various advantages of ANNs are cited in the literature [14,23,35,93,124,160,251].
The three discussed in what follows are the most frequently cited and, in the case of
the first and second, arguably the most important.

a. Function Approximation

We have seen that ANNs can approximate any computable function as closely as
desired. The function f that a given ANN approximates is determined by the para-
meter values, or weights, associated with the ANN, and these parameter values are
learned from a data set D C . In principle, therefore, NLP functions can be approxi-
mated from data using ANNS, thereby bypassing the explicit design of algorithms.

What should one want to dispense with explicit design? Looking back on
several decades” work on symbolic artificial intelligence (AI), some researchers
have come to feel that a variety of problems, including some NLP ones, are too
difficult to be solved by explicit algorithm design, given the current state of software
technology [93,124,218,305], and have instead turned to function approximation
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techniques, such as ANNs; Arbib [9], referring to the class of adaptive systems to
which ANNs belong, writes: The key motivation for using learning networks is that it
may be too hard to program explicitly the behavior that one sees in a black box, but one
may be able to drive a network by the actual input/output behavior of that box.. .to
cause it to adapt itself into a network which approximates that given behavior (p.20).
A, and probably the, chief advantage of ANN technology for NLP, therefore, is that
it offers an alternative way of implementing NLP functions that have thus far proved
difficult to implement using explicit algorithm design.

It should be noted that function approximation from data is not exclusive to
ANNs. There is renewed interest in non-ANN machine learning in the AI commu-
nity [146,169,170,307,355,371]. The claim here is not that ANNSs are the only or even
the best approach to function approximation in the AI/NLP domain [206,210], but
rather that they offer one possible technology for it.

b. Noise Tolerance

Practical NLP systems must operate in real-world environments, and real-world
environments are characterized by noise, which can for present purposes be taken
as the presence of probabilistic errors in the data—spelling or syntax errors, for
example. A frequent criticism of symbolic AI/NLP systems is that they are brittle
in the sense that noisy input which the designer has not taken into account can cause
a degree of malfunction out of all proportion to the severity of the input corruption
[i.e., 218]. The standard claim is that ANNs are far less brittle, so that the perfor-
mance of an ANN-based system will “degrade gracefully” in some reasonable pro-
portion to the degree of corruption.

Noise tolerance is a by-product of ANN function approximation by nonlinear
regression. We have seen that ANNs approximate a function from data by fitting a
regression curve to data points, and that the best approximation—the one that
generalizes best—is not the curve that passes through the data points, but the one
that captures the general shape of the data distribution. Most of the data points in a
noisy environment will be at some distance from the regression curve; if the input
corruption is not too severe, the regression model will place the corresponding out-
put in or near the training data distribution.

Symbolic NLP systems have historically been heavily dependent on generative
linguistic theory. This was and is reasonable: linguistic theory has been intensively
developed for several decades, and it constitutes a substantial body of knowledge
about how natural language works. But mainstream generative linguistic theory
concerns itself with what has traditionally been called competence [3,63] models of
the human language faculty, disregarding, as a matter of principle, the myriad con-
tingencies of real-world linguistic usage. To the extent that it is based on generative
linguistic theory, therefore, a symbolic NLP system is an intrinsically competence
design that has to be supplemented with mechnisms that allow it to operate with an
acceptable level of resilience in response to noisy real-world input. There is no
theoretical obstacle to this: the process of adapting a competence virtual machine
is a matter of software development. In practice, though, the often-cited brittleness
of symbolic systems indicates that this has so far proved problematical. ANN func-
tion approximation does away with the need for this adaptation process. There is no
a priori competence model, only performance data from which the net learns the
required mapping. What the net learns is not an implementation of a competence
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virtual machine, but rather an implementation of some (nonexplicitly specified)
performance virtual machine [52].

c. ANNs and Biological Brains

A frequently cited advantage of ANNS is that they are brain-like to greater or lesser
degrees and, therefore, more suitable for difficult AI problems such as vision, speech,
and natural language understanding than are conventional Al methods. The argu-
ment goes like this. We know that the biological brain implements functions such as
vision, speech, and so on. For artificial implementation of such functions it makes
practical sense to work with a processing architecture that is as close as possible to
that of the brain. ANNs are closer to brains in terms of processing architectures than
serial computers. Consequently, ANNSs are to be preferred for Al applications. There
is no theoretical justification for this, because (certain types of) ANN and the class of
Turing Machines are computationally equivalent. The argument is a pragmatic one
that will, presumably, be decided on empirical grounds one day. For the moment, its
validity is a matter of personal judgment.

A final note. ANNSs had a resurgence of popularity in the mid-1980s, and from
some overenthusiastic claims made at the time one might have thought that they
were a philosopher’s stone for the problems that beset a wide range of computation-
ally oriented disciplines. Since then, it has become increasingly clear that they are
not. The observation that the class of ANNs can implement the computable func-
tions directly parallels the one that Turing Machines are capable of the same thing: it
is reassuring that the solution to any given (computable) problem exists, but that
does not help one find it. For Turing Machine-based computation, this is a matter of
identifying an appropriate algorithm. For ANNS it is a matter of training. But, as we
saw earlier, successful function approximation and consequent noise tolerance
involves appropriate choice of data and network architecture. The function approx-
imation and noise tolerance here cited as technological advantages are not automatic
properties of all ANNs in all applications. Rather, they must be attained by theore-
tically informed design and experiment.

2. Disadvantages

Two of the main problems associated with ANNs, scaling and generalization, have
already been discussed, together with possible solutions. To these must be added:

a. Inscrutability

A network that has loaded training data and generalizes well realizes a desired
behaviour, but it is not immediately obvious how it does so; the set of connection
strengths determine the behaviour, but direct examination of them does not tell one
very much [16]. Because of this, ANNs acquired a reputation as “black box” solu-
tions soon after their resurgence in the early—mid-1980s, and have consequently been
viewed with some suspicion, particularly in critical application areas such as medical
diagnosis expert systems, where unpredictable behaviour, or even the possibility of
unpredictable behaviour, is unacceptable. ANNs are, however, no longer the black
boxes they used to be. We have looked at mathematical tools for understanding
them, and various analytical techniques have been developed [16,37,64,77,144].
Inscrutability has, in short, .become less of a disadvantage in the application of
ANN:E.
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b. Representation of Structure

A foundational assumption of current mainstream thinking about natural language
is that sentences have syntactic and semantic hierarchical structure. It is easy to
represent such structure using symbolic AI/NLP techniques, but is problematic in
ANN:G. In fact, the ability of ANNSs to represent structure has been a major research
issue, of which more is said later in this chapter.

3. Discussion

It needs to be stressed that, in the foregding comparison of symbolic and ANN
technology, the intention was not to argue that one is necessarily ‘“‘better” than
the other in a partisan sense. They are alternative technologies, each with its
strengths and weaknesses and, in an NLP context, can be used pragmatically in
line with one’s aims [99,141,169,213,333]. The current position relative to NLP is
that ANN-based systems, while becoming ever more powerful and sophisticated, have
not yet been able to provide equivalent (let alone alternative superior) capabilities to
those exhibited by symbolic systems [101, p 391].

B. History and Current State of ANN-Based NLP

In the 1930s and 1940s, mathematical logicians formalized the intuitive notion of an
effective procedure as a way of determining the class of functions that can be com-
puted algorithmically. A variety of formalisms were proposed-recursive functions,
lambda calculus, rewrite systems, automata, artificial neural networks—all of them
equivalent in terms of the class of functions they can compute [126]. Automata
theory was to predominate in the sense that, on the one hand, it provided the
theoretical basis for the architecture of most current computer technology and, on
the other, it is the standard computational formalism in numerous science and
engineering disciplines. The predominance was not immediate, however, and artifi-
cial neural networks in particular continued to be developed throughout the 1950s
and 1960s [124,160,169,222,264,335]. Indeed, the perceptron, introduced in the late
1950s, caused considerable scientific and even popular excitement because it could
learn from an environment, rather than having to be explicitly configured. But, in
1969, Minsky and Papert [229] showed that there were computable functions that
perceptrons could not compute [see discussion in Ref. 261], as a consequence of
which ANN-based research activity diminished significantly, and throughout the
1970s automata theory became the dominant computational formalism. Some
researchers persevered with ANNs, however, and by the early 1980s interest in
them had begun to revive [111]. In 1986 Rumelhart and McClelland published
their now-classic Parallel Distributed Processing [281] volumes. Among other things,
these proposed the backpropagation learning algorithm, which made it possible to
train multilayer nets and thereby to overcome the computational limitations that
Minsky and Papert had demonstrated for perceptrons. The effect was immediate. An
explosion of interest both in the theory and application of ANNs ensued, and that
interest continues today.

One of the ANN application areas has been NLP, and the purpose of this
section is to survey its development. Unfortunately, the application of ANN tech-
nology to NLP is not as straightforward to document as one might wish. The Preface
noted that the development of NLP is historically intertwined with that of several
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other language-oriented disciplines—cognitive science, Al, generative linguistics,
computational linguistics [on this see Ref. 9, pp. 11-17 and 31-34]. In general, the
interaction of these disciplines has been and continues to be important, because
insights in any one of them can and often do benefit the others. It remains, however,
that each discipline has its own research agenda and methodology, and it is possible
to waste a good deal of time engaging with issues that are simply irrelevant to NLP.
Now, it happens that ANN-based research into natural language has historically
been strongly cognitive science-oriented, and the cognitive science agenda has driven
work on NL to a large extent. For present purposes it is important to be clear about
the significance of this for NLP. This section, therefore, is in two parts. The first
considers the significance of the cognitive science bias for ANN-based NLP, and the
second then gives an overview of work in the field.

1. ANN-based NLP and Cognitive Science

The formalisms invented in the 1930s and 1940s to define computable functions were
soon applied to modelling of aspects of human intelligence, including language
[17,159; see also discussion in Minds and Machines 1994; 4:377-490]. There have
been two main strands of development. One is based on automata and formal
language theory, and has come to be known as the “symbolic” paradigm. The
other is based on ANNs and is known as the “‘connectionist” or ‘“‘subsymbolic”
paradigm. Until fairly recently, the symbolic paradigm dominated thinking about
natural language in linguistics, cognitive science, and Al. It reached its apotheosis in
the late 1970s, when Newell and Simon proposed the Physical Symbol System
Hypothesis (PSSH), in which “physical symbol system’ is understood as a physical
implementation of a mathematically stated effective procedure, the prime example of
which is the Turine Machine [see discussion in Ref. 334]:

The necessary and sufficient condition for a system to exhibit general intelligent action is
that it be a physical symbol system. Necessary means that any physical system that
exhibits general intelligence will be an instance of a physical symbol system. Sufficient
means that any physical symbol system can be organized further to exhibit general
intelligence [240].

The PSSH was based on existing results in linguistics, cognitive science, and Al, and
was intended both as an agenda for future work in those disciplines—it sets the terms
in which we search for a scientific theory of mind [240l—and was also widely accepted
as such. Thus, by 1980, these disciplines were all concerned with physical symbol
systems: in essence, the first two proposed cognitive virtual architectures, and the
third implemented them. At this time, however, interest in ANNs was being revived
by cognitive scientists who saw them as an alternative to the dominant symbolic
paradigm in cognitive modelling, and a debate soon arose on the relative merits of
the PSSH- and ANN-based approaches to cognitive modelling. The PSSH case was
put in 1988 by Fodor and Pylyshyn (FP) [116], who labelled what we are here calling
the symbolic as the “classical’ position, and Smolensky (SM) [310] argued the ANN-
based case; between them they set the parameters for subsequent discussion. It is
important to be as clear as possible about the issues, so a summary is presented here.

FP and SM agreed on_the following (all quotations in what follows are from
[116] and [310]):
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e For any object of scientific study, there are levels of description, all poten-
tially true of that object. The level of description chosen depends on the sort
of explanation required.

e The level of interest in the debate between what will henceforth be referred
to as the symbolists and the subsymbolists is the cognitive level, and the aim
is to specify models of (aspects of) human cognition.

e The cognitive level is defined by the postulation of representational mental
states, which are states of the mind that encode states of the world; mental
states have semantics. Discussions at the cognitive level, therefore, must
address mental architectures based on representational states.

e There is a fundamental disagreement between symbolists and subsymbolists
about the nature of mental representations and the processes that operate
on them.

Thereafter, they differed. We consider their positions separately.

The symbolist position which FP articulated descends directly from the PSS
hypothesis, and thus proposes cognitive architectures that compute by algorithmic
manipulation of symbol structures. On this view of cognitive modelling, the mind is
taken to be a symbol-manipulation machine. Specifically:

e There are representational primitives: symbols. FP refer to these as atomic
representations.

e Being representational, symbols have semantic content; that is, each symbol
denotes some aspect of the world.

e A representational state consists of one or more symbols, each with an
associated semantics, in which (i) there is a distinction between structurally
atomic and structurally molecular representations, (ii) structurally molecu-
lar representations have syntactic constituents that are themselves either
structurally molecular or structurally atomic, and (iii) the semantic content
of a representation is a function of the semantic contents of its syntactic
parts, together with the syntactic structure.

e Input—output mappings and the transformation of mental states are defined
over the structural properties of mental representations. Because these have
combinatorial structure, mental processes apply to them by virtue of their
form.

Together, the foregoing features define cognitive architectures that are intended to be
taken literally in the sense that they constrain their physical realization. In particular,
the symbol structures in a classical model are assumed to correspond to real physical
structures in the brain, and the combinatorial structure of a representation is supposed
to have a counterpart in the structural relations among physical properties of the brain.
This is why Newell (1980) speaks of computational systems such as brains as physical
symbol systems. This bears emphasis because the classic theory is committed to there
being not only a system of physically instantiated symbols, but also the claim that the
physical properties onto which the structure of the symbols is mapped are the very
properties that cause the system to behave as it does. A system which has symbolic
expressions, but whose operations does not depend on the structure of these expressions
does not qualify as a classical machine.
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Therefore, if in principle syntactic relations can be made to parallel semantic relations,
and if in principle you have a mechanism whose operation on expressions are sensitive to
syntax, then it is in principle possible to construct a syntactically driven machine whose
state transitions satisfy semantic criteria of coherence. The idea that the brain is such a
machine is the foundational hypothesis of classical cognitive science.

SM distinguished symbolic and subsymbolic paradigms in cognitive science.
The symbolic paradigm corresponds directly to the classic position just outlined,
whereas the subsymbolic paradigm is the one that he himself proposed. The sub-
symbolic paradigm defines models that are massively parallel computational systems
that are a kind of dynamical system. Specifically:

e The representational primitives are called “subsymbols.” They are like
classic symbols in being representational, but unlike them in being finer-
grained: they correspond to constituents of the symbols used in the symbolic
paradigm. . . Entities that are typically represented in the symbolic paradigm
as symbols are typically represented in the subsymbolic paradigm as a large
number of subsymbols. A subsymbol in a subsymbolic ANN model corre-
sponds directly to a single processing unit.

e Being representational, subsymbols have a semantic content, that is, each
subsymbol denotes some aspect of the world. The difference between sym-
bolic and subsymbolic models lies in the nature of the semantic content. SM
distinguishes two semantic levels, the conceptual and the subconceptual:
The conceptual level is populated by consciously accessible concepts, whereas
the subconceptual one is comprised of finer-grained entities beneath the level
of conscious concepts. In classic models, symbols typically have conceptual
semantics, that is, semantics that correspond directly to the concepts that
the modeller uses to analyze the task domain, whereas subsymbols in sub-
symbolic models have subconceptual semantics; the semantic content of a
subsymbol in a subsymbolic ANN model corresponds directly to the activ-
ity level of a single processing unit.

e In the symbolic paradigm, as noted, input-output mappings and the
transformation of mental states are defined over the structural properties
of mental representations. Because these have combinatorial structure,
mental processes can apply to them by virtue of their form. This is not
so in the subsymbolic case. Subsymbolic representations are not operated
on by processes that manipulate symbol structures in a way that is
sensitive to their combinatorial form because subsymbolic representa-
tions do not have combinatorial form. Instead, they are operated on
by numeric computation. Specifically, a subsymbolic ANN model is a
dynamical system the state of which is a numerical vector of the activa-
tion values of the units comprising the net at any instant 7. The evolu-
tion of the state vector is determined by the interaction of (a) the current
input, (b) the current state of the system at ¢, and (c) a set of numerical
parameters corresponding to the relative strengths of the connections
among units.
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How do the symbolic and subsymbolic paradigms relate to one another as
cognitive models? FP dismissed the subsymbolic paradigm as inadequate for cogni-
tive modelling. SM was more accommodating.

FP argued as follows. Symbolists posit constituency relations among represen-
tational primitives, that is, among symbols, which allows for combinatorial repre-
sentations. For subsymbolists the representational primitives are units or aggregates
of units, but only one primitive relation is defined among units: causal connected-
ness. In the absence of constituency relations, subsymbolic ANN models cannot
have representational states with combinatorial syntactic and semantic structure.
Because subsymbolic representations lack combinatorial structure, mental processes
cannot operate on them in the structure-sensitive way characteristic of symbolic
models. To summarize, classical and connectionist [ = subsymbolic] theories disagree
about the nature of mental representations. For the former but not the latter, repre-
sentations characteristically exhibit combinatorial constituent structure and combina-
torial semantics. Classical and connectionist theories also disagree about the nature of
mental processes: for the former but not the latter, mental processes are characteris-
tically sensitive to the combinatorial structure of the representations on which they
operate. These two issues define the dispute about the nature of cognitive architecture.
Now, any adequate cognitive model must explain the productivity and systematicity
of cognitive capacities (on systematicity see [143,241,242,304]). Symbolic models
appeal to the combinatorial structure of mental representations to do this, but sub-
symbolists cannot: Because it acknowledges neither syntactic nor semantic structure in
mental representations, it treats cognitive states not as a generated set but as a list, and
among other things lists lack explanatory utility. Because they cannot explain cog-
nitive productivity and systematicity, subsymbolic models are inadequate as cogni-
tive models. Subsymbolic models may be useful as implementations of symbolically
defined cognitive architectures, but this has no implications for cognitive science.

SM proposed his view of the relation between symbolic and subsymbolic para-
digms in the following context: Given a physical system S and two computational
descriptions of its behaviour—a ‘“lower level”” description u, say an assembly lan-
guage program, and a “higher-level” description M, say a Pascal program, what
possible relations hold betwen u and M? Three possibilities are proposed:

1. Implementation: Both w and M are complte, formal, and precise accounts
of the computation performed by S. Here u can be said to implement M in
that there is nothing in the lower-level account that is not also in the
higher-level one.

2. Elimination: w is a complete, formal, and precise account of S, and M bears
no systematic relation to it. Here, M has no descriptive validity, and u
eliminates M.

3. Refinement: u is a complete, formal, and precise account of S, and M is not.
There are, however, systematic relations between u and M, so that M can
be said to approximately describe S. Here u is said to refine M.

SM’s proposal was that subsymbolic models refine symbolic ones, rather than, as FP
had suggested, implementing them. In a now-famous analogy, he likened the relation
between symbolic and subsymbolic paradigms to that which obtains between the
macrophysics of Newtonian mechanies and the microphysics of quantum theory.
Newtonian mechanics is not literally instantiated in the world according to the
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microtheory, because fundamental elements in the ontology of the macrotheory,
such as rigid bodies, cannot literally exist according to the microtheory. In short,
in a strictly literal sense, if the microtheory is right, then the macrotheory is wrong.
This does not, however, mean that Newtonian mechanics has to be eliminated, for it
has an explanatory capacity that is crucial in a range of sciences and branches of
engineering, and that a (strictly correct) quantum mechanical account lacks; such
explanatory capacity is crucial in SM’s view. Thus, cognitive systems are explained in
the symbolic paradigm as approximate higher-level regularities that emerge from quan-
titative laws operating on a more fundamental level —the subconceptual—wirh differ-
ent semantics. Or, put another way, symbolic models are competence models that
idealize aspects of physical system behaviour, whereas subsymbolic models are per-
formance models that attempt to describe physical systems as accurately as possible.

As noted, these two positions set the parameters of a debate that was to
continue to the present day. It began with a long series of peer commentaries
appended to Smolensky’s article, and both Smolensky and Fodor subsequently
expanded on their positions [117-119,311,312,314]. In addition, numerous other
researchers joined the discussion; a representative sample is [21,30,40,42,59,60—
62,64,66,67,89,92,93,99,108,169,171,172,177,241,267,304,347,350-352,355-357,365];
see also the discussion in Minds and Machines 1994. There is no way we can follow
the debate any further here, or presume to judge the complex issues it has raised. We
do, however, need to be clear about its implications for ANN-based NLP.

Firstly, the debate has forced a reexamination of fundamental ideas in cogni-
tive science and Al [i.e., 64,67,93], and its results are directly relevant to NLP. It has,
moreover, already been noted that much of the ANN-based research on NL is done
within a cognitive science framework. ANN-based NLP cannot, therefore, afford to
ignore developments in the corresponding cognitive science work. This is not bland
ecumenism, but a simple fact of life.

Secondly, notwithstanding what has just been said, it remains that the cogni-
tive science focus of the debate can easily mislead the NLP researcher who is con-
sidering ANNSs as a possible technology and wants to assess their suitability. The
debate centres on the nature of cognitive theories and on the appropriateness of
symbolist and subsymbolist paradigms for articulation of such theories. These issues,
however intrinsically interesting, are orthogonal to the concerns of NLP as this
handbook construes them. Cognitive science is concerned with scientific explanation
of human cognition (on explanation in cognitive science see [63,64] and Minds and
Machines 1998, 8), including the language faculty, whereas NLP construed as lan-
guage engineering has no commitment to explanation of any aspect of human cogni-
tion, and NLP systems have no necessary interpretation as cognitive models. The
symbolist argument that the ANN paradigm is inadequate in principle for framing
cognitive theories is, therefore, irrelevant to NLP as understood by this handbook,
as are criticisms of particular ANN language-processing architectures in the litera-
ture on the grounds that they are ‘“cognitively implausible,” or fail to “capture
generalizations,” or do not accord with psycholinguistic data.

Thirdly, once the need for cognitive explanation is factored out, the debate
reduces to a comparison of standard automata theory and ANNs as computational
technologies [169,171]. So construed, the relation is straightforward. We have taken
the aim of NLP to be design and construction of physical devices that have specific
behaviours in response to text input. For design purposes, the stimulus—response
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behaviour of any required device can be described as a mathematical function, that
is, as a mapping from an input to an output set. Because, moreover, the stimulus—
response behaviour of any physical device is necessarily finite, the corresponding
input-output sets can also be finite, with the consequence that every NLP function
is computable; in fact, the sizes of the I/O sets are specifiable by the designer and,
therefore can be defined in such a way as to make the function not only finite and
thereby theoretically computable, but also computationally tractable. As such, for
any NLP mapping, there will be a Turing Machine—a PSS—that computes it. But
we have seen that certain classes of ANN are Turing equivalent, so there is no
theoretical computability basis for a choice between the two technologies. The choice
hinges, rather, on practical considerations such as ease of applicability to the pro-
blem in hand, processing efficiency, noise and damage tolerance, and so on. A useful
illustrative analogy is selection of a programming language to implement a virtual
machine that computes some function. All standard-programming languages are
equivalent in terms of the functions they can implement, but some are more suitable
for a given problem domain than others in terms of such things as expressiveness or
execution speed: assembler would be much harder to use in coding some complex Al
function than, say LISP, but once done it would almost certainly run faster
[169,171].

And finally, the debate has set the agenda for ANN-based language-oriented
research in two major respects: the paradigm within the research is conducted, and
the ability of ANNs to represent compositional structure. Both these issues are
discussed in what follows.

2. ANN-Based NLP: An Overview

ANN-based NL research [46,55,101,276,296,299,301] began, fairly slowly, in the
early 1980s with papers on implementing semantic networks in ANNs [167], visual
word recognition [139,216,279], word—sense disambiguation [72—74], anaphora reso-
lution [275], and syntactic parsing [109,294,295,309]. In 1986, Lehnert published a
paper [212] on the implications of ANN technology for NLP, an indication that this
early work had by then attracted the attention of mainstream work in the field. Also,
1986 was the year in which the Parallel Distributed Processing volumes [281]
appeared, and these contained several chapters on language: McClelland and
Kawamoto on case role assignment, McClelland on word recognition, and
Rumelhart and McClelland on English past-tense acquisition. All of these were to
be influential, but the last-named had an effect out of all proportion to the intrinsic
importance of the linguistic issue it dealt with. Rumelhart and McClelland [280]
presented an ANN that learned English past-tense morphology from a training set
of (past-tense, present-tense) verb form pairs, including both regular (“-ed’’) and
irregular formations. They considered their net as a cognitive model of past-tense
morphology acquisition on the grounds that its learning dynamics were in close
agreement with psycholinguistic data on past-tense acquisition in children and,
because it was able to generalize the regular-tense formation to previously unseen
present-tense forms after training, that it had learned an aspect of English morphol-
ogy. Crucially, though, the net did this without reference to any explicit or implicit
PSS architecture. This was quickly perceived as a challenge by symbolist cognitive
scientists, and it became a test case in the symbolist vs. subsymbolist debate outlined
earlier. Pinker and Prince [252] made a long and detailed critique, in response to
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which the Rumelhart and McClelland model was refined by a succession of
researchers [64,82,83,108,219,258,259]; see also 220 and the discussion in Chap. 31].

From an NLP point of view, the chief importance of Rumelhart and
McClelland’s work and its successive refinements is not in its validity as a cognitive
model, but in the impetus that it gave to ANN-based NL research. It made 1986 a
watershed year, in the sense that the number of language-oriented papers has
increased dramatically since then. Disregarding speech and phonology because of
this handbook’s focus on text processing, there has been further work on a wide
variety of topics, a representative selection of which follows:

Morphology [64,82,83,108,128,129,147-149,219,220,234,258,259,268]

Lexical access [257,293]

Lexical category learning [104-106,115]

Noun phrase analysis [370]

Anaphora resolution [1]

Prepositional phrase attachment [71,343]

Grammaticality judgment [3,205,207,210,378]

Syntax acquisition [45,53,54,56-58, 104-106,108,144,362,377]

Parsing [47,73,145,161-163,174,178-180,198-200,227,231,270,320,324,334,
359,363]

Case role assignment [217,224,228,324,325]

Lexical semantics [11,12,69,90,110,113,235,238,239,272-274,286-290,319,
323,366]

Lexical disambiguation [34,190]

String semantics [3,71,144,228,233,323,325,326,367]

Metaphor interpretation [236,369]

Reasoning [201-203,306,328-331]

Full text understanding [35,223,225,226]

Language generation [76,85-87,127,150,197,286]

A range of practical NLP applications have also been developed. Chapters 33-37
give a representative sample.

The extent of NLP-related work since 1986 precludes any attempt at a useful
summary here. Instead, the rest of this chapter discusses several important general
issues in ANN-based NLP, leaving detailed consideration of specific topics and
research results to the chapters that follow.

a. Research Paradigms

The symbolist-subsymbolist debate has resulted in a trifurcation of ANN-based
natural language-oriented research, based on the perceived relation between
PSSH- and ANN-based cognitive science and Al:

e The symbolic paradigm accepts FP’s view of the position of ANNSs relative
to cognitive science. It considers ANNs as an implementation technology
for explicitly specified PSS virtual machines, and it studies ways in which
such implementation can be accomplished. NL-oriented work in this para-
digm is described in Chap. 30.

e The subsymbolic paradigm subdivides into what is sometimes called “radi-
cal connectionism,” which assumes no prior PSSH analysis of the problem
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domain, but relies on inference of the appropriate processing dynamics
from data, and a position that, in essence, considers prior PSSH analysis
of the problem domain as a guide to system design or as an approximate or
competence description of the behaviour of the implemented system.
References [91-97,356] exemplify the radical position, and Smolensky, in
a manner of speaking the father of subsymbolism, has in various of his
writings [310,314-316] taken the second. The subsymbolic paradigm is
described in Chap. 31.

e The hybrid paradigm, as its name indicates, is a combination of the sym-
bolic and the subsymbolic. It uses symbolic and subsymbolic modules as
components in systems opportunistically, according to what works best for
any given purpose. A subsymbolic module might, for example, be used as a
preprocessor able to respond resiliently to noisy input, whereas the data
structures and control processes are conventional PSS designs
[99,169,171,218,332,333,367,368]. The hybrid paradigm is described in
Chap. 32.

Interest in the hybrid paradigm has grown rapidly in recent years and, to judge by
relative volumes of research literature, it is now the most often used of the foregoing
three alternatives in engineering-oriented applications such as NLP. It is not hard to
see why this should be so. The hybrid paradigm makes full use of theoretical results
and practical techniques developed over several decades of PSSH-based Al and NLP
work, and supplements it with the function-approximation and noise-resistance
advantages of ANNs when appropriate. By contrast, the symbolic and subsymbolic
paradigms are in competition with established PSSH-based theory or methodology.
On the one hand, the symbolic paradigm has yet to demonstrate that it will ever be
superior to conventional computer technology as an implementation medium for
PSS virtual machines [i.e., 99]. On the other hand, the subsymbolic paradigm essen-
tially disregards existing PSSH-based NLP theory and practice, and starts afresh. Of
the three paradigms, therefore, it is the least likely to generate commercially exploi-
table systems in the near future, although it is the most intriguing in pure research
terms.

b. Representation

The most fundamental requirement of any NLP system is that it represent the
ontology of the problem domain [64,114,124,300,303,304]; see also Chap. 28]. One
might, for example, want to map words to meanings, or strings to structural descrip-
tions: words, meanings, strings, and structures have to be reprsented in such a way
that the system can operate on them so as to implement the required mapping. Most
ANN-based NL work has been directly or indirectly concerned with this issue, and
this section deals with it in outline. ‘

Before proceeding, a particular aspect of the representation issue has to be
addressed. As we have seen, the symbolist—subsymbolist debate made representation
of compositional structure a major topic in ANN-based cognitive science. FP
claimed that ANNs were incapable of doing so and, accordingly, dismissed them
as inadequate for cognitive modelling. In response, adherents of ANN-based cogni-
tive science have developed a variety.of structuring mechanisms. Now, FP insists on
representation of compositional structure in cognitive modelling on explanatory
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grounds: it captures the productivity and systematicity of cognitive functions such as
language. But NLP is not interested in cognitive explanation. The aim is to design
and implement devices having some specified I/O behaviour. Whatever its impor-
tance for cognitive science, therefore, is representation of compositional structure is
an issue for ANN-based NLP?

Generative linguistic theory provides a well-developed and, by now, natural
way of thinking about NL, a foundational assumption of which is that sentences are
compositionally structured objects. Symbolist AT and NLP have shared this assump-
tion, and designed systems in which compositional data structures are manipulated
by structure-sensitive processes. This is one way of approaching the design and
implementation of NLP devices, but not the only way [64]. System identification
theory poses the black box problem, which asks: Given a physical device with an
observable input-output behaviour, but for which internal mechanism is not open to
inspection, what is its internal mechanism? The answer, in Arbib’s words, is this:
Even if we know completely the function, or behavior, of a device, we cannot deduce
JSrom this a unique structural description . .. The process of going from the behavior of a
system to its structural description is then not to be thought of as actually identifying
the particular state variable form of the system under study, but rather that of identify-
ing a state variable description of a system that will yield the observed behavior, even
though the mechanism for generating that behavior may be different from that of the
observed system [8, pp. 38-39 for discussion see Refs. 42 and 43]. Now, we have taken
the aim of NLP to be design and construction of physical devices with a specified I/O
behaviour, so the identification problem applies directly: given a desired I/O beha-
viour, what mechanism should be used to produce it? One answer is a Turing
Machine, as discussed earlier, but it is not the only answer [196]. It is possible to
use automata of complexity classes lower than that of Turing Machines, and even
finite state machines to compute NLP functions [51-55, 230]: we have already seen
that NLP functions are necessarily finite, and any finite function can be computed by
a finite-state machine. But finite-state machines can represent only trivial composi-
tionality that reduces to simple sequentiality; it was because of their inability to
represent nontrivial structure—that is, simultaneous left- and right-branching depen-
dency—that Chomsky originally rejected them as models for NL sentence structure
49, p.24]. Indeed, one could even use a continuous space dynamical system, for
which compositional discrete symbol structures are undefined. All three mechanisms
are theoretically capable of generating the required observable behaviour and,
assuming they are appropriately configured, they are equivalent for NLP purposes.

In principle, therefore, compositional structure is not necessary for NLP. It
may, however, be useful in practice. A discrete-time, continuous-space dynamical
system, such as a two-layer feedforward ANN, with sigmoid activation function,
may theoretically be capable of implementing any computable function, but, for
some particular function, is finding the required weight parameters computationally
tractable, and will network complexity have reasonable space requirements? It may
well turn out to be that compositional structure makes implementation of certain
NLP functions easier or indeed tractable; the need for compositional structure in
ANN-based NLP is an empirical matter and, consequently, researchers need to be
aware of the structuring mechanisms developed by ANN-based cognitive science.

There are two fundamentally different approaches to ANN-based representa-
tion [60,64,108,336,348,349]:
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1. Local representation: Given some set E of objects to be represented and a
set N of network units available for representational use, a local represen-
tation scheme (or “local scheme” for short) allocates a unique unit or
group of units € N for each object e € E.

2. Distributed representation: Given the same sets £ and N, a distributed
representational scheme uses all the units » € N to represent each e € E
[348,349].

The difference is exemplified in the pair of representational schemes for the integers
0..7 shown in Fig. 11. In the local scheme each bit represents a different integer,
whereas in the distributed one, all the bits are used to represent each integer, with a
different pattern for each. Because, in the local scheme, each bit stands for one and
only one integer, it can be appropriately labelled, but in the distributed scheme, no
bit stands for anything on its own; no bit can be individually labelled, and each is
interpretable only in relation to all the others.

Local and distributed schemes both have advantages [60,99,108,124,300,305,
336]. Much of the earlier work used localist representation, and although the balance
has now shifted to the distributed approach, significant localist activity remains
[15,35,101,110,133,201,203,274,305,306] (see also the discussion in Chap. 32). In
what follows, local and distributed approaches to representation of primitive objects
and of compositional structure in ANNs are discussed separately.

LOCAL REPRESENTATION

Representation of primitives

Local representation of primitive objects is identical with that in the PSSH
approach: in a PSS each object to be represented is assigned a symbol, and in local
ANN representation each object is assigned a unit in the net.

Representation of structure

Local representation of primitive objects is straightforward, but representa-
tion of compositional structure is not. The difficulty emerges from the following
example [24]. Assume a standard AI blocks world consisting of red and blue
triangles and squares. A localist ANN has to represent the possible combinations.

Local Distrib

1 0000001 [ 0000001
0000010 | 0000010
0000100 | 0000011
0001000 | 0000100
0010000 | 0000101
0100000 | 0000110
1000000 | 0000111

N ||| W N

Fig. 11 Local and distributed representations of the integers 1-7.
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One unit in the net is allocated to represent “red”, another for “blue,” another
for “triangle,” and yet another for ‘“square.” If one wants to represent ‘“red
triangle and blue square,” the obvious solution is to activate all four units.
Now represent “blue triangle and red square” using the same procedure. How
can the two representations be distinguished? The answer is that they cannot,
because there is no way to represent the different colour-to-shape bindings in the
two cases. In other words, there is no way to represent constituency in a net such
as this. Localists have developed a variety of binding mechanisms to overcome
this problem [24,102,305,306,329]:

DISTRIBUTED REPRESENTATION

Representation of primitives

In distributed ANNSs, each primitive object is represented as a pattern of
activity over some fixed-size group g of » units, or, abstractly, as a vector v of length
n in which the value in any vector element v; represents the activation of unit g;, for
1 < i < n. Such representation has two properties that localist schemes lack.

Firstly, the relation between a representation and what is represents can be
nonarbitrary in a distributed scheme. In a localist scheme, the relation is arbitrary:
each node (or node group) in a localist net represents a primitive object, and it does
not matter which node is chosen for which object. Such arbitrariness extends to
certain kinds of distributed representation as well. ASCII encoding can, for example,
be taken over directly into a text-based NLP system to represent alphanumeric
characters, such that the 256 eight-bit codes are distributively represented over
eight network units. This gives advantages of efficiency and damage resistance,
but the representation is arbitrary in the sense that each code assignment depends
only on binary number notation and the order in which the characters happen to
have been arranged. If one wanted to be perverse, the code-to-character assignment
could be altered without affecting the usefulness of the scheme, because there is no
reason to prefer any particular code for any particular character. Distributed repre-
sentation can, however, be made nonarbitrary by using feature vectors. Compare,
for example, ASCII and feature—vector representations for alphanumeric characters
in Fig. 12.

In the feature—vector scheme, each element of the grid is a pixel; the rows are
concatenated from the upper right, assigning value-1 for dark and 0 otherwise, and
the resulting vector represents the physical shape of the corresponding letter. As
such, the assignment of representation to what it represents is nonarbitrary.

Secondly, a nonarbitrary distributed scheme can represent similarities among
the primitive objects. In any distributed scheme, arbitrary or nonarbitrary, the
dimensionality #n of the vectors defines an n dimensional space within which the
representations have a similarity structure in the sense that some vectors are closer
than others in that space. In a nonarbitrary scheme, however, the similarity structure
systematically reflects similarities among represented objects. Referring to Fig. 12, F
and T are more visually similar than either O and F or O and T. In the ASCII
scheme there is no systematic relation between vector distance among codes and
visual similarity among bitmaps: the ASCII codes for O and F are most similar,
those for O and T are farthest apart. Distance among feature—vectors, however,
corresponds directly to visual similarity.
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ASCII Bitmap Bitmap vector

F 01000100 00111001000011000100

(0] 01001101

01110100011000101110

T 01010010 011 1000.1()()0010000 100

= 0 n

Fig. 12 ASCII and feature—vector representations of alphanumeric characters.

Until fairly recently, feature—vector representations were handcrafted, and
were thus conditioned by individual designers’ analyses of what is significant in
task domains. There has been a move away from such explicitly designed distributed
representational schemes to learned ones. For example, a feedforward MLP can be
used for this purpose by training it to autoassociate vectors, that is, by making each
vector v; in some data set both input and target output. If the hidden layer is smaller
than the input—output layers, then v; at the input of a trained net will generate a
“compressed representation” of itself on the hidden units, which can be used as a
representation of v; in subsequent processing. Examples of learned distributed repre-
sentations in NLP applications [101] are FGREP [223,225] (described in Chap. 37)
and xRAAM [211].

Representation of structure

Using a distributed ANN to represent compositional structure is difficult
because arbitrarily complex structures have to be represented with a fixed-size
resource, that is, over some specific group of units. To see this, assume that the
primitive objects in a given domain are represented as feature vectors. An ANN
that uses distributed representations by definition uses all the available units for
each vector. There would be no difficulty about individually representing “man,”
for example, or “horse.” But how would the net represent “man” and “horse” at
the same time? Even more difficult is representation of relations, such as “man on
horse.” The problem, therefore, has been to find ways of overcoming this diffi-
culty.

The crucial insight came from van Gelder in 1990 [348; discussed in Ref. 64].
He argued that distributed representations can be compositional, but not necessarily
in the sense intended within the PSSH paradigm. Van Gelder’s paper has become
very influential in ANN-based cognitive science generally; its importance for present
purposes lies in the distributed compositional representation that it proposes, and
that also underlies several distributed ANN-based representational mechanisms.
Because of its importance, a reasonably detailed account of it is given here.

Van Gelder states a set of “minimal abstract conditions” that any representa-
tional scheme must satisfy for it to be compositional:
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There is a set of primitive types (symbols, words, and such) P;. For each type
there is available an unbounded number of tokens.

There is a set of expression types R;. For each type there is available an
unbounded number of tokens.

There is a set of constituency relations over these primitive and expression

types.

He then focusses on the distinction between the types and tokens in these conditions,
and makes that distinction the basis of his proposal for distributed compositional
representation. The argument goes like this. Specification of a particular representa-
tional scheme is bipartite. On the one hand, the primitive and expression types
together with the abstract constituency relations among them have to be stated.
On the other hand, it is necessary to state what the tokens of the primitive and
expression types look like physically, and how primitive and expression tokens can
be combined to generate new expression tokens. The physical specification is neces-
sary because it provides a notation in terms of which the abstract specification can be
stated and applied; without a notation, there is no way to talk about the abstract
representational scheme. The standard way of specifying compositional representa-
tional schemes conflates the abstract and physical specifications. Thus, the specifica-
tion, If A and B are wff, then (A&B) is a wff, uses the physical symbols 4, B and
(A&B) to specify two primitive types and their combination is an expression type
without making the distinction between abstract and physical explicit. This is neces-
sarily the case, because notation exists to permit formal statement of abstractions. It
does, however, obscure the distinction, maintenance of which is crucial to the argu-
ment for distributed compositional representation. In particular, given any set of
primitive types, primitive expressions, and constituency relations, and given also a
set of primitive tokens, there is more than one way of physically instantiating the
abstract constituency relations by combining primitive tokens into expression
tokens. Two sorts of such “modes of combination” are cited:

1. Concatenative combination. The tokens of an expression’s constituents
are physically present in the expression token. Thus, the logical expression
[(P&O)&R] contains the expression token (P&Q) and the primitive token
R, and (P&Q) itself contains the primitive tokens P and Q. This concate-
native compositionality is spatial: primitive tokens are placed alongside
one another in a physical sequence, as in [( P&Q ) &R].

A concatenative representational scheme says two things: When one is
describing a representation as having a concatenative structure, one is mak-
ing more than just the grammatical point that it stands in certain abstract
constituency relations. One also says that it will have a formal structure of a
certain kind, that is, a structure such that the abstract constituency relations
among expression types find direct, concrete instantiation in the physical
structure of the corresponding tokens. This is called syntactic structure.
Thus, the syntactic structure of the representation is the kind of formal
Structure that results when a concatenative mode of combination is used.

2. Nonconcatenative combination. The familiar compositional schemes—
natural languages, programming languages, mathematical and logical lan-
guages—are all concatenative. This makes it easy to lose sight of the
possibility that there might be alternatives to concatenative combination



NLP Based on Artificial Neural Networks 689

of tokens for representation of abstract constituency relations. To repre-
sent abstract constituency relations, it is sufficient to specify general, effec-
tive, and reliable procedures for generating expression tokens from
constituent tokens, and for decomposing expressions into their constitu-
ents. One way of doing this is to specify processes operating on concate-
native representations, but there is no reason, in principle, why tokens of
constituents should be literally present in token expressions. If general,
effective, and reliable procedures for generation and decomposition of
nonconcatenative expression tokens can be specified, then the scheme
can legitimately be said to represent the corresponding abstract constitu-
ency relations. Any scheme that specifies such procedures is said to be
functionally compositional. Van Gelder cites Goedel numbering for formal
languages as an example, the details of which would take us too far afield;
the important features for present purposes are that it provides the
required general, effective, and reliable procedures for constructing expres-
sion tokens from constituent tokens and for decomposing expression
tokens into constituent tokens, and that the generated expression tokens
do not literally contain the constituent tokens, as they do in concatenative
schemes.

Concatenation cannot work with an ANN that uses distributed representation
because the size of an expression token must increase with the complexity of the
abstract constituency that it represents, but the ANN representational resource is
limited to the size of a single primitive token. The importance of nonconcatenative
representation is that it breaks the link between abstract complexity and spatial
representation size: because it does not require constituent tokens to be physically
present in an expression token, it becomes possible, in principle, to represent abstract
constituency relations over a fixed-size resource. What is needed in ANN terms are
“general, effective, and reliable procedures” to compose constituent tokens into and
to decompose them from expression tokens represented over the representational
units of the net. Several such nonconcatenative mechanisms have been proposed
[101,242,348], chief among them tensor products [313], recursive autoassociative
memories (RAAM) [262,263; see also Ref. 41], and holographic-reduced descriptions
[254-256]. These are discussed in Chaps. 30 and 31.

c. Sequential Processing

Text processing is inherently sequential in the sense that word tokens arrive at the
processor over time. ANN-based work on NL has addressed this sequentiality using
three main types of network architecture [23]:

MULTILAYER PERCEPTRONS. MLPs are a feedforward architecture, and time is
not a parameter in feedforward nets: they map inputs to outputs instantaneously.
Consequently, MLPs appear to be inappropriate for sequential processing.
Nevertheless, the earlier ANN-based NL work used them for this purpose by, in
effect, spatializing time. Given a set of symbol strings to be processed, the MLP is
given an input layer large enough to accommodate the longest string in the set, as in
Fig. 13. This was unwieldy both because, depending on the input encoding scheme, it
could result in large nets that take a long time to train, and because of the inherent
variability in the length of NL strings. It is now rarely used.
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TIME-DELAY NEURAL NETWORKS. A time-delay neural network (TDNN) is an
MLP for which the input layer is a buffer k elements wide, as shown in Fig. 14. It
processes input dynamically over time 7o, 7; . . ., by updating the input buffer at each
t; and propagating the current input values through the net to generate an output.
The problem here is buffer size. For example, any dependencies in a string for which
the lexical distance is greater than the buffer size will be lost. In the limiting case, a
buffer size equal to the input string length reduces to an MLP. TDNNSs have been
successfully used for finite-state machine induction [70] and in NLP applications
[23,32,33].

RECURRENT NETWORKS. Recurrent networks (RANN) use a fixed-size input
layer to process strings dynamically; RANNSs used for NL work are discrete-time,
and input successive symbols in a string at time steps #, ¢, ... 1,, as in Fig. 15. The
net’s memory of sequential symbol ordering at any point in the input string is
maintained in the current state, which is fed back at each time step.

NL research using RANNSs has proceeded in concert with the work on auto-
mata induction described earlier [53,54,56-58,68,104-108,185,204,205,207,210,
297,298]. Because RANNSs are dynamical systems, they can display the range of
behaviours that characterize such systems. ANN-based NL work has so far used
mainly fixed-point dynamics, but there have been some who exploit more complex
dynamics [13,29,177,194,265] (see also discussion in [23,108] and Chap. 31).

Other approaches to dynamic processing of symbol sequences have been devel-
oped [232], such as sequential Kohonen nets [44,181], but most existing ANN-based
NL work has used the foregoing three varieties.

Y4

Output

Fig. 13 An MLP for string pr.ocessing.
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t=1.2

Output

v o

Fig. 14 A TDNN for sequential string processing.

Dynamic processing of language is usefully understood in the context of

work on the dynamical systems approach to cognitive modelling
[20,66,67,107,108,191,267,351].

d. Tabula Rasa Learning

The overwhelming majority of ANN-based language work involves learning, and is
thus describable as language acquisition research in a broad sense. There is a large
generative linguistics and cognitive science literature on language acquisition, the
aim of which is to explain how children learn the linguistic knowledge characteristic
of adult native speakers. Such explanation is typically stated in terms of a generative
linguistic theoretical framework, and based on the “poverty of the stimulus” argu-
ment: the examples of language usage available to children is insufficiently rich to
allow adult linguistic competence to be inferred without some innate set of con-
straints that make the acquisition process tractable; this set of constraints is
known as Universal Grammar [50,253]. ANN-oriented linguists and cognitive scien-
tists on the other hand argue that rich linguistic representations can emerge from the
interaction of a relatively simple learning device and a structured linguistic environment
[260; see also 3,64,108], although most now agree that some form of innate con-
straint is necessary [17,18,108,182,302]; on the nature of such constraints; however,
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Fig. 15 A RANN for sequential string processing.

see other discussions [52,53,57,64,108]. The difference between them and generati-
vists is not absolute, in the sense that they support tabula rasa learning as a general
strategy for language acquisition, but rather one of degree: they differ from gener-
ativists on the relative importance of innate constraints and environmental factors,
tending to emphasize the latter. On language acquisition see also Chap. 29.

In the discussion of computational complexity of ANN learning we looked
briefly at ways of initializing nets with knowledge of the problem domain, thereby
constraining the learning process and rendering it more tractable. These are general
techniques, and are thus applicable to NL language learning. In the NLP literature,
however, two main emphases have emerged [64]:

INCREMENTAL TRAINING. As we have seen, domain knowledge can be incorpo-
rated into a net by appropriate initialization of weights. NL-oriented work has,
however, preferred to achieve this by incremental training, whereby domain knowl-
edge is not explicitly compiled into network weights, but acquired from data. For
some language-learning task, the net is initially trained on short, syntactically simple
strings, and as these are learned, increasingly longer and more complex strings are
introduced into the training set. Elman [106] found that, for an NL set S containing
strings that varied in structural complexity from monoclausal to multiple layers of
embedding, a given RANN with randomly initialized weights—that is, a tabula rasa
net lacking any systematic prior knowledge—could not learn the S if the whole of S
was used for training, but could if the strings were presented such that the mono-
clausal ones were presented first, then those with one level of embedding, and so on.
In the first phase of training, all 10,000 strings of the training set were monoclausal.
Once the net had learned these, the training set was redefined to include 7,500
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monoclausal strings and 2,500 with embedded clauses, then 5,000 monoclausal and
5,000 complex, and finally 10,000 complex. Loading of the final 10,000 complex
strings was successful, whereas the attempt to train the same fabula rasa net on
the final training set of 10,000 complex strings had been unsuccessful [see also
Refs. 64,65,135].

TOPOLOGICAL STRUCTURING. Theoretically, a single MLP with a sufficient num-
ber of hidden units can implement any computable function. Therefore, it should be
possible to implement any required NLP function using a sufficiently large MLP.
Early work in fact did use single MLPs to solve small language-processing problems,
but there is now a widespread recognition that this approach will not work for large,
real-world applications: We cannot feed 20 years of raw sensory input to a 3-layer,
feed-forward, back-error propagation network and then expect a college graduate to
result [199, p. 46; 101,110]. As NLP systems have grown in size and complexity, they
have increasingly used modular architectures, in which modules for specific tasks are
interconnected in accordance with the preanalyzed requirements of the problem
domain, and thereby compute the required function globally [84,125,184].
Miikkulainen’s language-understanding system, described in Chap. 37, is an example
[see also 225,226,228]; the Ly/NTL project is another [110,113]. Hybrid architectures
are a special case of modular ones in which ANN and PSS-based modules interact.

Why are modular systems expected to work where large single-ANN ones are
not? Essentially because the structuring of the modules relative to one another
reflects prior knowledge of the task domain, and is thus a way of incorporating
prior constraints into a learning system to aid tractability, as discussed earlier.

An alternative approach to topological structuring focuses on the amount of
memory available to the learning system. In the same series of experiments referred
to in the preceding subsection on incremental training, Elman [106] presented the
entire training set to the net in one batch, but varied the amount of feedback
memory, starting small and gradually increasing it in the course of training. The
result was that the net was able to learn the training set, but only in stages: initially,
when memory was most restricted, it learned only the simplest strings in the training
set and, as memory was gradually increased, it was able to learn strings of increasing
syntactic complexity [see also 64].

e. Meaning

There are some NLP applications, such as document search, for which the meaning
of the text being processed is not an issue. In others, semantic interpretation of text is
necessary, but reasonably straightforward; an example would be an NL command
interpreter for a database front end, where both the syntax of input strings and the
semantic interpretations to which they are mapped are both well defined and severely
restricted relative to normal linguistic usage. When, however, one moves to Al-
oriented applications such as (more or less) unrestricted NL-understanding systems,
semantic interpretation becomes a difficult and still largely unresolved problem.
ANNSs do not provide an easy solution, but they do offer a promising alternative
to existing PSSH-based approaches.

Meaning is variously understood by different disciplines and by researchers
within them. It does, however, seem noncontroversial to say that meaning of NL
linguistic expressions has to do with denotation of states of the world, and that
semantic interpretation is a mapping from strings to denotations. That, in any
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case, is what is assumed here. PSSH-based AI and NLP systems have implemented
the mapping by constructing system-internal representations of some aspect of the
world—the “domain of discourse”—and then relating input strings to the represen-
tation [25,192]. How best to represent the word has become of the research discipline
in its own right—knowledge representation—and numerous formalisms exist.
Systems that use logic formalisms, for example, transform input strings into logical
propositions, and these are then related to the domain representation using a deduc-
tive inference mechanism to arrive at a semantic interpretation. Some ANN-based
work on semantic interpretation continues in the PSSH tradition, in the sense that
they use explicitly designed domain representations. Other work takes a radically
different approach, however: input strings are mapped not to explicitly designed
representations of the world which, inevitably, reflect a designer’s analysis of what
is significant in the task domain, but to representations that are learned from the
world through transducers without designer intervention. At its most ambitious, this
line of research aims to embed NLP systems in robotic agents that not only receive
inputs from an environment by, say, visual, acoustic, and tactile transducers, but
also interact with and change the environment by means of effectors. The aim is for
such agents to develop internal world representations by integrating inputs and
internal states through self-organization based on adaptive interaction with the
environment: Concepts are thus the “system’s own,” and their meaning is no longer
parasitic on the concepts of others (the system designer) [97]. In particular, agents
would learn to represent the meanings of words and expressions from their use in
specific environment-interactive situations. Work on this is proceeding[11,12,75,
92,93,96-98,100,101,112,113,176,237-239,251,272-274,283,288,319,322,356], although it
must be said that, to keep experimental simulations tractable, the goal of
real-world interaction is often reduced to explicitly designed microworlds remi-
niscent of ones like the famous SHRLDU in the PSSH tradition. On these
matters see also Chap. 31.

The work just cited is symptomatic of developments in cognitive science and Al
that emphasize the role of the real-world environment in the explanation of cogni-
tion and in the design and constriction of artificially intelligent machines
[66,67,93,151-158].
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tive listing. What follows is a selection of those that have proven particularly useful;
all contain links to other sites. Individual researchers’ pages are not included. These
can be found using a Web search engine.

e The Neural Theory of Language Project (formerly the L, project):
http://www.icsi.berkeley.edu/NTL
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e NEC Research Institute:
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e Center for the Neural Basis of Cognition, Carnegie Mellon University/

University of Pittsburgh
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e Interactive Systems Lab, Carnegie Mellon University/University of

Karlsruhe:
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