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The proliferation of computational technology has geeeéran
explosive production of electronically encoded informatibmalbkinds. In
the face of this, traditional philological methods faearch and
interpretation of data have been overwhelmed by voluraed
computational methods have been developed in an attempiake the
deluge tractable. These developments have clear imphsator corpus-
based linguistics in general, and for corpus-based studyarajuage
variation in particular. As more and larger electrooarpora become
available, effective analysis of them will increagyngge tractable only by
adapting the interpretative methods developed by the staljstiformation
retrieval, pattern recognition, and related communities. use such
analytical methods effectively, however, issues thiaeavith respect to the
abstraction of data from corpora have to be understood.

This paper addresses an issue that has a fundamentiaglwathe
validity of analytical results based on such datarssiya The discussion is
in three main parts. The first part shows how a particglass of
computational methods, exploratory multivariate analysan be used in
language variation research, the second explains whysgataity can be a

problem in such analysis, and the third outlines someisodut



1. Exploratory multivariate analysisin the study of language variation

A typical research question in the study of language t@mias:
given a corpus comprising a collection of documents eafchwhich
represents the linguistic characteristics of a singgeaker --phonetic,
phonological, morphological, lexical, or syntacticancthe documents and
thus the speakers be classified on the basis of thagaaotéristics? This
kind of question can be answered using an empirical methgpgkimwn as

exploratory multivariate analysis (Andrienko & Andrieko 2R05

1.1 The nature of exploratory multivariate analysis

In describing a domain of interest, the researchectseparticular
aspects of the domain which seem salient to the resgasstion, and each
selected aspect is represented by a variable. If only peetasf the domain
is observed the data is said to be univariate, if type@s are observed the
data is bivariate, if three trivariate, and so on updme numben. Any
data where is greater than 1 is multivariate.

The larger the number of variables, the more difficddta is to
interpret. Take, for example, data in which 100 people aseritbed in
terms of a single variable ‘age’. Visual inspection woulfficel to classify
the people on that variable. If these people are dedchpawo variables
‘age’ and ‘height’, classification becomes more diffic but visual
inspection is probably still sufficient. If, howeverethare described by,

say, 50 variables (‘income’, ‘eye colour’, etc), classifion by visual



inspection becomes intractable for most people. In gersydhe number of
variables grows, so does the difficulty of conceptuadiz the

interrelationships of variables on the one hand, andnteereélationships of
objects —here people— described by those variables anthe Exploratory
multivariate analysis is a general term for matheraliyibased methods for
understanding data when it has too many variables for itbe&o

comprehensible via direct inspection.

1.2 Application to historical dialectology

Exploratory multivariate analysis methods are intentte classify
any given set of objects described by more or less numesaniebles.
Because this is the kind of research question with whiogulage variation
research is often concerned, their extension to corpalyss is a natural
step. To exemplify this extension, we consider the désile Electronic
Corpus of Tyneside English (NECTE), a corpus of diagmtech from
North-East England (Allen et al. 2006). It includes phiznganscriptions
of 63 interviews together with social data about the lggrsa and as such
offers an opportunity to study the phonetic dialectolofyymeside speech
of the late 1960s. We have begun that study using explgrat@alysis of
the transcriptions with the aim of generating hypothesssut phonetic
variation among speakers and speaker groups (Moisl et al. ZDi&3e
studies were based on comparison of phonetic profilexiassd with each
of the NECTE speakers, where a profile is the numbeineds a given

speaker uses each of the phonetic segments in the BIE@Mscription



scheme. There are 156 segments, so a speaker profésdsbeéd by 156
variables. The 63 speaker profiles are represented as d5&@Bmatrix N, a
fragment of which is shown in Figure 1. The aim is &ssify the speakers

in accordance with the frequency values in their prafile

vi: i Vo v156: o
Speaker 1 23 4 7
Speaker 2 3 56 4
Speaker
63 18 35 8

Figure 1: NECTE phonetic segment frequency data matrix N

N is an example of data that is simply too large andptex to be
interpretable by direct inspection. It was therefore lyaea using
hierarchical cluster analysis (Everitt et al. 2001), aelyidised exploratory

method that represents relative similarity among tlemas as a nested tree.
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Figure 2: Cluster analysis of the NECTE data matrix N
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The hierarchical analysis of N in Figure 2 partitions NeCTE speakers
into groups on the basis of their phonetic usage. Thie diatinction is
between middle class speakers from Newcastle on tlie side of the river
Tyne (NG2) and working class speakers from Gatesheadche@rsduth
(NG1). The Gateshead speakers are further categorized N@Gab
(exclusively male) and NG1b (mainly through not exclusivemale). and
NG1la is subcategorized into NG1a(i) (working class feg)aad NGla(ii)

(males and females with relatively higher socioecontatus).

2. The problem of data sparsity

Sparsity is a major issue in data analysis generabyl€¢ysen 2003;
Verleysen et al. 2003). Why this is so is best explaingdrims of a widely
used way of representing data: vector space representAtigector is a

sequence of numbers indexed by the positive integers 1,22, 3

v=[1.6]24]7.5] - [0.6]
1 2 3 n

Figure 3: A vector
A vector space is a geometrical interpretation of a vertowhich the
dimensionalityn of the vector defines amdimensional space, the sequence
of numerical values comprising the vector specifies cootesna the space,
and the vector itself is a point at the specified coatém For example, the
two components of a vectar= (30 70) in Figure 4 are coordinates of a
point in a two-dimensional space, and thos& af(40 20 60) of a point in

three-dimensional space:



100

(30 70)

100 1III/ + (40 20 &0)

Figure 4: Vectors in 2- and 3-dimensional space
A length-4 vector defines a point in 4-dimensional space,sanon to any
dimensionalityn.

Given a data matrix in which the rows are the datastand the
columns the variables, that matrix defines a manifolch-timensional
space. The concept 'manifold’' comes from mathematpaldgy (Munkres
2000); for present purposes it can be understood as the shdpé&aan
space. What is the 'shape' of data? Assume a datax maitni 1000 3-
dimensional vectors. If these vectors are plotted-tin&nsional space,
they form a cloud of points. Depending on the nature of th
interrelationships of the objects that the vectors desctfita¢ cloud might
be completely random, or might have some nonrandoumtste (ie, Figure

5).

Figure 5: A manifold in 3-dimensional space
The shape defined by the vector cloud is a manifold, andddee extends
directly to any dimensionality. For the purposes of tliésussion, therefore,

a manifold is a set of vectorsmdimensional space.



To discern the shape of a manifold, there must be eraatghpoints
to give it adequate definition. If, as in the Figure 6a&rehare just two

points, the only reasonable manifold to propose is a line

Figure 6: Manifolds in 3-dimensional space
Where there are 3 points, a plane as in Figure 6b isnabke. But it is only
as the number of data points grows that the true shapkeomanifold
emerges, as in Figure 6¢. The general rule, thereforhelanore data the
better for manifold definition.

Getting enough data can be, and with high-dimensionalvatidte
data usually is, difficult or even intractable (Bishop 200@83¥erleysen
2003; Verleysen et al. 2003). The problem is that the spawdich the
manifold is embedded grows very quickly with dimensionalitg, to retain
a reasonable degree of manifold definition, more and mat& is required
until, equally quickly, getting enough becomes impossible.

Assume an application in which the frequency of eaclabie is
determined for each data item, and that, for simplidigquency is always
in the range 0..9. Where there are 2 variables, the nuafbgossible 2-
dimensional vectors such as (0,9), (3,4), and so on xs110= 100. This is
the data space. Where there are 3 variables, the nuohbgossible 3-
dimensional vectors (0,9,2), (3,4,7) and so on is 10 x 10 = 1000. For 4

variables the data space is 10 x 10 x 10 x 10 = 10000. In getheralze of



a data space i§ 1 where r is the measurement range of the variabtes (h
0..9) and d the dimensionality. THefunction generates an extremely rapid
increase of data space size with dimensionality: evenmbdest d = 8
allows for 100,000,000 possible vectors. This is a problem bectuse
larger the data dimensionality, the more difficultbécomes to define the
manifold sufficiently well to achieve reliable analyticabults.

To see why, assume that we want to analyze, sagp@dkers in
terms of their frequency of usage of two phonetic segsnémtse segments
are rare, so a range of 0..9 is sufficient. The rafiactual to possible
vectors in the space is 24/100 = 0.24, or, put another \kayyectors
occupy 24% of the data space. If we now want to anaha@set24 speakers
in terms of their usage of three phonetic segmehts,ratio of actual to
possible vectors is 24/1000 = 0.024 or 2.4 % of the data spaite émght-
dimensional case, it is 24/100000000 = 0.00000024 %. A fixed number of
vectors occupies proportionately less and less of tha dpace with
increasing dimensionality. In other words, the data sgammomes so
sparsely inhabited by vectors that the shape of the manifoidot, in
general, be reliably determined.

What about using more data, as proposed earlier? Letthata?4%
occupancy of the data space is judged to be adequate for manifol
resolution. To achieve that for the above 3-dimensi@aase one would
need 240 vectors, for the 4-dimensional case 2400, and for8the
dimensional one 24,000,000. This may or may not be possibénjogiven

corpus. And what are the prospects for dimensionalitggsehithan 87



3. Solutions

Given that provision of additional data to improve tladinition of
sparse manifolds is not always a tractable prospect, rémeaining
alternatives are: (i) to use sparse manifolds fotoeafory analysis and to
live with the consequent unreliability, or (ii) to attetmto reduce the
sparsity. The remainder of the discussion addresses (ii).

Various methods have been developed to reduce sparsity,asuch
tf/idf (Robertson 2004), Poisson distribution (Church &e54995), and
principal component analysis (Jolliffe 2002). We look ahethod that is
conceptually simpler than any of these: eliminationrelatively low-
variance variables.

Classification of documents depends on there beingtiaar in the
characteristics of interest to the research questibthere is no variation,
the documents are identical and cannot be classifietiveeta one another.
Variables describing the characteristics of interesttlawe only useful for
classification if there is significant variation ihet values they take. In any
classification exercize, therefore, variables wittel or no variation can be
disregarded.

Mathematically, the degree of variation in the valaka variable is
described by its variance, that is, by the average deviafidhe variable
values from their mean. Given, on the one hand, aim@trin which the
rows are the data objects and the columns are varide®sibing those

objects, and on the other that the aim is to claskéyobjects on the basis of



the differences among them, then the application afiance to
dimensionality reduction is straightforward: elimindtem Q all columns
with low variance. The 63 x 156 NECTE matrix N is veparse, since
there are only 63 vectors in a 156-dimensional space, buwy ofahe 156
variables are superfluous and can be eliminated, greatly ingduc
dimensionality and thus sparsity. The variance fehe# the columns of N
was calculated, sorted by decreasing magnitude, and pldteedesult is

shown in figure 7:
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Figure 7: Sorted column variances of the NECTE dataix st
The variables to the right of —generously—the 80th havk kwe variance
that they can be eliminated from consideration. Thesgrew therefore,
removed from N, resulting in a reduced-dimensionality 63 x@@ix. The

analysis of this reduced matrix gave the cluster tree/sho Figure 2.

Conclusion
The discussion began by observing that (i) as more aerlar
electronic corpora become available for the studyaofjllage variation,

effective analysis of them will increasingly be tedde only by using



mathematically and statistically based interpretatie¢hods, and (ii) to use
such methods effectively, issues that arise with redpeitte abstraction of
data from corpora have to be understood. Data spagsstych an issue. The
discussion was in three main parts. The first partvedohow a particular
class of computational methods, exploratory multivaretalysis, can be
used in language variation research, the second explainedatdgparsity
can be a problem in such analysis, and the third odtlgzene solutions.
The conclusion is that exploratory analysis of angdistic corpus in which
the data is high-dimensional must reduce the data maternsionality as

much as possible consistent with the need to descrilmdthas adequately.
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