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Abstract 
Data nonlinearity has historically not been 
and currently is not an issue in work on 
exploratory multivariate analysis of 
language corpora. However, the presence 
of nonlinearity in data has a fundamental 
bearing on the conduct of exploratory 
analysis. The first part of the discussion 
explains why this is so in principle, and 
the second exemplifies the explanation via 
exploratory analysis of the Newcastle 
Electronic Corpus of Tyneside English 
(NECTE), an historical speech corpus. 
The conclusion is that data should be 
screened for nonlinearity prior to analysis 
and, if a substantial degree of it is found, a 
nonlinear analytical method should be 
used. 
 

1. Introduction 
 Exploratory multivariate analysis methods 
are used across a wide range of research disciplines 
to identify interesting structure in multidimensional 
data whose characteristics are not well known, and, 
if structure is found, to generate hypotheses about 
the domain which the data describes (Andrienko 
and Andrienko, 2005). Corpus-based linguistics 
has long been among these disciplines, and, as 
computational power has increased and ever-larger 
natural language corpora have become available, 
the application of exploratory analysis in empirical 
linguistic research has grown. When one surveys 
the relevant linguistics literature, it becomes clear 
that data nonlinearity has historically not been and 
is not currently an issue. An exhaustive review 
cannot be undertaken here, but a snapshot of recent 
literature is symptomatic: neither the relevant 
papers in the Literary and Linguistic Computing 

journal's special issue on 'Progress in 
Dialectometry' (2006) nor Manning and Schütze's 
discussion of clustering in their subject-standard 
Foundations of Statistical Natural Language 
Processing (2000) refer to it, except perhaps in 
passing. However, the presence of nonlinearity in 
data has a fundamental bearing on the conduct of 
exploratory analysis. The first part of the 
discussion explains why this is so in principle, and 
the second exemplifies the explanation via 
exploratory analysis of the Newcastle Electronic 
Corpus of Tyneside English (NECTE), an historical 
speech corpus. The conclusion is that data should 
be screened for nonlinearity prior to analysis and, if 
a substantial degree of it is found, a nonlinear 
analytical method should be used. 
 
2. Nonlinearity and exploratory analysis  
 In physical systems, nonlinearity is the 
breakdown of proportionality between cause and 
effect, and it manifests itself in a variety of 
complex and often unexpected --including chaotic-
- behaviours. Since nonlinearity pervades the 
physical world (see for example Bertuglia, 2005), 
data that describes it is likely to contain 
nonlinearity as well. If the data is in vector space 
representation, such nonlinearity manifests itself as 
curvature in the data manifold, which can range 
from simple curves and surfaces to highly 
convoluted fractals. 
 Many of the commonly used exploratory 
multivariate methods, henceforth called 'linear 
methods', are insensitive to nonlinearity, and as 
such can generate results that misrepresent the 
structure of a nonlinear data manifold. This 
insensitivity stems from the way in which the linear 
methods measure distance between pairs of vectors 
in the manifold --as the shortest straight-line 



distance between them. This is not, however, the 
only possible measure. This distance between two 
cities can be measured linearly as in figure 1a or 
nonlinearly along the curve of the earth's surface, 
as in figure 1b: 
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Figure 1: Linear and nonlinear distance measure 
 
Linear distance in this case seriously misrepresents 
the true distance. The same applies to nonlinear 
data manifolds. Figure 2 shows an extreme 
example frequently used in discussions of 
nonlinear dimensionality reduction (i.e. 
Tenenbaum et al., 2000), in which linear distance 
and distance along the surface of the manifold 
differ markedly.  
 

 
 

Figure 2: Linear and nonlinear distance in a 
nonlinear manifold 

 
Linear exploratory methods base their 
representation of data structure on linear distance 
between vectors in the data space. If the manifold 
diverges significantly from linearity, linear distance 
measures can give distorted results. 
 The classic response to the discovery of 
nonlinearity in data is to remove it using well 
established methods like log-transformation (i.e. 
Clarke and Cooke, 1998:571-4), and then to 
analyze the linearized data using a linear method. 
This risks throwing the proverbial baby out with 
the bathwater. Nonlinearity is not always just a 
nuisance to be eliminated, but may reflect a 
fundamental aspect of the thing being studied; in 
fact, the study of nonlinearity in natural systems is 

now well established across a range of disciplines 
(Scott, 2004). If nonlinearity is found in natural 
language corpus data, the default should be to 
retain it on the grounds that it might reflect a 
scientifically interesting aspect of corpus structure. 
If it is retained, however, linear analytical methods 
become inapplicable in principle, and nonlinear 
ones which measure distance along the curvature of 
the manifold must be used. 
   
3. Exploratory analysis of the NECTE data 
 
3.1 The NECTE data  
 The Newcastle Electronic Corpus of 
Tyneside English (NECTE) is a corpus of dialect 
speech from Tyneside in North-East England 
(Allen et al., 2005). It includes phonetic 
transcriptions of 63 interviews together with social 
data about the speakers, and as such offers an 
opportunity to study the sociophonetics of 
Tyneside speech of the late 1960s. Moisl et al. 
(2006) and  Moisl and Maguire (2007) have begun 
that study using exploratory analysis of the 
transcriptions with the aim of generating 
hypotheses about phonetic variation among 
speakers in the Tyneside dialect area. These studies 
were based on comparison of profiles associated 
with each of the informants. A profile for any 
speaker S is the number of times S uses each of the 
phonetic segments in the NECTE transcription 
scheme in his or her interview. More specifically, 
the profile P associated with S is a vector having as 
many elements as there are segments such that 
each vector element Pj represents the j’th segment, 
where j is in the range 1..number of segments in 
the NECTE phonetic transcription scheme, and the 
value stored at Pj is an integer representing the 
number of times S uses the j’th  segment. There are 
156 segments, and so a speaker profile is a length-
156 vector. There are 63 TLS speakers, and their 
profiles are represented in a matrix M having 63 
rows, one for each profile.  
 
3.2 Identifying nonlinearity 
 Where the data dimensionality is 3 or less, 
nonlinearity can be identified by creating a 
scatterplot of the manifold and looking for 
curvature. Visual interpretation is subjective, 
however. It can be unreliable when the shape of the 
manifold is not as clear cut as, say, in figure 2, and 
needs to be supplemented with some quantitative 



measure of nonlinearity; for high-dimensional data 
direct graphical representation is impossible 
(Andrienko and Andrienko, 2005, ch. 4), and 
quantitative measurement is the only alternative. 
The most straightforward measures are based the 
residuals in linear and nonlinear regression: the 
sum of squares of residuals, or SSR, gives the total 
divergence of the data variables from the line of 
best fit, and the standard error their average 
dispersion around the line in a way analogous to 
univariate standard deviation. 
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Figure 3: Lines of best fit in linear and nonlinear 

regression 
 
For a given pair of variables, if the SSR and 
standard error from a nonlinear regression are less 
than those from a linear one, then a curve fits the 
data better than a straight line and the relationship 
of the two variables is nonlinear.  
 In applications where the dimensionality 
of the data can be in the hundreds or even 
thousands, pairwise regression-based testing of 
nonlinearity can quickly become onerous since, 
for any given dimensionality n,  
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For n = 100, there would be 4950 different variable 
pairs to consider. The situation can be salvaged in 
cases where some variables are more important 
than others relative to the research question by 
examining only a tractable subset of important 
variables. Several criteria for variable importance 
are available, such as variance, term frequency / 

inverse document frequency (Robertson, 2004) and 
Poisson distribution (Church and Gale, 1995a, 
1995b); the use of variance for this purpose is 
exemplified below. 
 With a dimensionality of 156, 12090 
variable pairs would have to be tested for 
nonlinearity, which is not impossible but certainly 
onerous. The number of pairs to be considered was 
therefore reduced to a manageable level using the 
relative variances of the 156 variables as a 
selection criterion. The justification for using 
variance for this purpose is as follows. 
Classification of objects in any domain of study 
depends on there being variation in their 
characteristics. When the objects to be classified 
are described by variables, then a variable is only 
useful for the purpose if there is significant 
variation in the values that it takes; those with little 
or no variation can be disregarded. The variances 
of the column vectors of M were calculated, sorted 
in descending order of magnitude, and plotted in 
figure 4. 
 

 
 

Figure 4: Variances of column vectors of N 
 
The highest-variance dozen variables were 
selected and linear, quadratic, and cubic regression 
were applied to all 66 distinct pairings of them, in 
each case calculating SSR and standard error. 
Three examples are given: figure 5a is 
representative of the linearly-related pairs, figure 
5b of moderately nonlinear pairs, and figure 5c of 
strongly nonlinear ones. The frequencies of these 
are 12 linear, 25 moderately nonlinear, and 29 
strongly nonlinear. 

 
 
 
 
 



  Regression plots Quantifications 

a 

 

Linear  
SSR 26682.00 

Standard Error 20.74 
Quadratic  

SSR 26622.40 
Standard Error 20.89 

Cubic  
SSR 26598.20 

Standard error 21.05  

b 

 

Linear  
SSR 53703.43 

Standard Error 29.67 
Quadratic  

SSR 53496.58 
Standard Error 29.86 

Cubic  
SSR 38880.40 

Standard error 25.67  

c 

 

Linear  
SSR 95071.21 

Standard error 39.16 
Quadratic  

SSR 49281.20 
Standard error 28.42 

Cubic  
SSR 22206.88 

Standard error 19.24  

 
Figure 5: Sample regressions of variable pairs from data matrix M 

 
The essentially linear relationship of v1 and v2 is 
clear both visually and in the uniformity of SSR 
and standard error measures, where the nonlinear 
regressions yield no meaningful improvement over 
the linear. For v1 and v9 cubic regression shows 
some improvement over linear and quadratic both 
visually and quantitatively. For v6 and v12 the 
quadratic regression line is visually a much better 
fit to the data than the linear one, and the cubic 

one is even better; correspondingly, the quadratic 
quantifications show a substantial improvement 
over the linear ones, and the cubic ones even more 
so. The relationships between the highest-variance 
variables in M can, therefore, be said to range 
from linear to strongly nonlinear.  
 
 



3.3 Linear and nonlinear analysis of the NECTE 
data  
 Moisl et al. (2006) analyzed the NECTE 
data with what is probably the most widely used of 
the linear exploratory methods: hierarchical cluster 
analysis (Everitt et al., 2001). This is actually a 
class of methods each of which defines clusters 
differently, but all of which represent cluster 
structure as nested constituency trees. Infamously -
-and unsurprisingly, given that each uses a different 
definition of what constitutes a cluster-- the variant 
methods can and often do assign different tree 
structures to the same data, and it is not usually 
clear which is to be preferred (Everitt et al., 2001, 
ch. 4). In the NECTE case, however, a range of 
variants (single link, complete link, average link, 
Ward's Method) converged on a stable structure of 
four main clusters exemplified by the Ward tree 
shown in figure 6. 

 
Figure 6: Ward's Method cluster tree for data 

matrix M 
 
When interpreted in terms of the social data that 
NECTE provides for the speakers, a clear 
correlation between phonetic usage and social 
factors emerged. The main distinction is between 
middle class, well educated speakers from 

Newcastle on the north side of the river Tyne, 
labelled N, and working class, less well educated 
speakers from Gateshead on the south side of the 
Tyne, labelled G. The Gateshead speakers are 
categorized into G2 (exclusively male), and G1 
(mainly through not exclusively female); G1 is 
subcategorized into G1a (working class males and 
females) and G1b (males and females with 
relatively higher socioeconomic status). Moisl and 
Maguire (2007) subsequently used the centroids of 
these clusters to identify the phonetic features most 
characteristic of each. Three sets of vowels were 
found to be of particular importance. Although all 
of these had been commented on before, their 
relative (and cumulative) sociolinguistic 
importance had hitherto escaped attention. They 
are: 

• various types of [ə]. 
• [ɔː] and [ɑː], which correspond to RP [əʊ], 

and are found in words of the GOAT 
lexical set as defined by Wells (1982:146-
7). 

• [aɪ], [ɑː], and [eɪ], which correspond to RP 

[aɪ], and are found in words belonging to 
the PRICE lexical set as defined by Wells 
(1982:149-50).  

 For nonlinear analysis the self-organizing 
map, or SOM, was selected from among the 
various available nonlinear exploratory methods 
because it has been successfully used in a very 
wide range of applications (Kaski et al., 1998; Oja 
et al., 2001). The standard SOM (Kohonen, 2001) 
projects the topology of a data manifold in a space 
of arbitrary dimensionality n onto a two-
dimensional lattice, where the structure of the 
manifold can be visually inspected. It does this by 
partitioning the vectors on the manifold surface 
into a Voronoi tesselation (Aurenhammer and 
Klein, 2000), thereby assigning all the data vectors 
within a defined topological neighborhood to the 
same cell of the tesselation, as shown in figure 7. 
 

 
Figure 7: Voronoi tesselation of a manifold surface 



For example, the doughnut shape on the left of 
figure 7 is a manifold in 3-dimensional space, and 
the square on the right represents the way in which 
a SOM partitions its surface: each dot represents a 
quantized vector and the lines enclosing a dot 
represent the boundaries of the area of the 
tesselation cell containing the k vectors within the 
specified topological neighborhood. All the vectors 
in a given cell are mapped to the same lattice unit, 
and the vectors in adjoining cells are mapped to 
adjacent lattice units. The result of this topology 
preservation is that all vectors close to one another 
in the input space in the sense that they are in the 
same or adjoining topological neighbourhoods will 
be close on the SOM output lattice (for further 

discussion see Ritter et al., (1992), ch. 4). The 
topology preservation is, moreover, nonlinear 
because the tesselation is based not on a global 
distance measure between vectors on the manifold 
but on local neighborhood distance, and as such the 
tesselation follows the manifold surface: if the 
surface is nonlinear, so is the topology-preserving 
representation of it.  
 The NECTE data was analyzed using a 
range of SOM parameters for output lattice size 
and shape and various initializations such as 
starting neighborhood, learning rate, and rate of 
neighborhood decrease. The results converged on a 
stable analysis of which the following map is 
representative. 

 
Figure 8: SOM analysis of the NECTE data 

 
The speaker labels were positioned automatically 
on the lattice by the SOM's input-to-lattice 
mapping function, and the shading was generated 
using the U-matrix method (Ultsch, 1993). This 
shading must be understood in order to interpret the 
above SOM correctly, so a brief explanation is 
given here. It has already been noted that the SOM 
preserves the topology of the n-dimensional input 
manifold in the sense that vectors which are close 
in the input space are also close in the two-
dimensional output space. The converse is not true, 
however: just because vectors are close in the 
output space does not necessarily mean that they 
are close on the input manifold. This apparently-
paradoxical situation arises because the SOM 

mapping function does not use a global distance 
measure but only local neighborhood distance, and 
it consequently cannot and does not represent 
proportionality of distance between vector pairs in 
the input space. Instead, is squeezes its 
representation of the input topology onto the lattice 
in such a way that closely adjacent lattice cells may 
represent vectors which are far apart on the input 
manifold. Because, therefore, spatial distance is a 
delphic guide to interpretation of the SOM, some 
way must be found of demarcating the shape of the 
manifold representation given by the lattice. The 
U-matrix is a way of doing this. How it works can 
only be explained in terms of the details of SOM 
architecture, which cannot be given here on 



account of space constraints. It is, however, 
important to understand that lighter regions of the 
map represent manifold boundaries and darker ones 
the manifold surface; metaphorically, the darker 
areas are islands representing the shape of the 
manifold, and the lighter areas the sea separating 
them. The remaining annotations in figure 8, 
finally, were added by hand to facilitate discussion 
in the next subsection, and are explained there. 
 
3.4 Discussion 
 Associated with each speaker on the SOM 
is a label which shows that speaker's place in the 
hierarchical cluster tree --tlsg08 on the SOM is in 
cluster G1a in the tree, for example. In addition, 
solid-line curves have been added to the SOM 
which show the approximate areas of the map that 
correspond to the main hierarchical clusters and, 
for each region, the relevant hierarchical cluster 
label has been shown surrounded by a square --the 
upper left corner of the SOM, for example, is 
bounded by a solid curve and labelled N to show 
that the speaker vectors found there correspond to 
those in the N hierarchical cluster. Using these 
annotations, it might appear that the hierarchical 
and SOM analyses are similar: the hierarchical 
analysis shows four main clusters, and the SOM 
has four disjoint regions corresponding to those 
clusters. This perception of correspondence is, 
however, based on spatial placement of the speaker 
vectors on the SOM, and, as we have seen, relative 
spatial distance on a SOM can be misleading. If 
one looks instead at the U-matrix shading that 
demarcates the manifold boundaries, the Newcastle 
group is as clearly distinguished from the 
Gateshead speakers by the SOM as by the 
hierarchical analysis, but the Gateshead speakers 
are grouped in a way that differs subtly from the 
hierarchical analysis. The hierarchical analysis says 
that there are three distinct Gateshead groups: G1a 
consists of working class men and women, G1b of 
lower middle class men and women, and G2 of 
working class men. The SOM, on the other hand, 
says that the Gateshead speakers fall into only two 
main groups the boundary between which is shown 
in figure 8 as a dotted-line curve. The one above 
and to the right of the dotted line (and excluding 
the Newcastle group) consists of lower middle 
class men and women and working class women. 
The other, below and to the left of the dotted line, 
comprises working class men together with two 

women (tlsg37 and tlsg40) who are classified with 
men both here and in the hierarchical analysis. 
 The linear and nonlinear methods, 
therefore, offer results that differ substantively. 
From a methodological point of view, the SOM 
result must be preferred because the data contains 
nonlinearity, and a nonlinear method can be 
expected to give a more accurate analysis of 
nonlinear data than a linear one. A sociolinguist 
might find the SOM analysis preferable on grounds 
of simplicity: there is no obvious distinction in the 
social data between the working class men that the 
hierarchical analysis assigns to separate clusters. 
The present paper is, however, a methodological 
one, and no further comment is ventured on this. 
 
5. Conclusion 
 The discussion began with the observation 
that existing work on exploratory analysis of 
linguistic corpora does not take the possibility of 
data nonlinearity into account, and claimed that the 
presence of nonlinearity in data has a fundamental 
bearing on the conduct of exploratory analysis. The 
first part of the discussion explained why this is so 
in principle, and the second exemplified the 
explanation via exploratory analysis of the 
Newcastle Electronic Corpus of Tyneside English 
using both linear and nonlinear methods. That the 
two types of method gave substantively different 
results supports the case in principle that data 
should be screened for nonlinearity prior to 
exploratory analysis and that, if substantial degree 
of it is found, a nonlinear analytical method should 
be used. 
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