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The Newcastle Electronic Corpus of Tyneside English (Necte) is a sample of
dialect speech from Tyneside in North-East England (Corrigan et al 2006; Allen
et al. 2007). Jones-Sargent (1983), Moisl and Jones (2005), and Moisl, Maguire
and Allen (2006) used cluster analysis to show that the speakers who constitute
the earlier of the two chronological strata in the corpus fall into distinct groups
defined by relative frequency of usage of phonetic segments, and Moisl and
Maguire (2008) went on to identify the main phonetic determinants of that
grouping by comparing cluster centroids. The present discussion develops these
findings by constructing a map which comprehensively describes the pattern of
phonetic variation across the Necte speakers, and, in combination with the
earlier studies just cited, is intended as a contribution to a methodology for
corpus-based mathematical and statistical study of language variation.

The discussion is in two main parts: the first part briefly describes Necte,
the second constructs the phonetic variation map.

1 The Newcastle Electronic Corpus of Tyne-
side English

Necte is a corpus of dialect speech from Tyneside in North-East England,
shown as the boxed area in Figure 1.

It is based on two pre-existing corpora of audio-recorded speech, one of them
gathered in the late 1960s by the Tyneside Linguistic Survey (Tls) (Strang 1968;
Pellowe et al. 1972), and the other between 1991 and 1994 by the Phonological
Variation and Change in Contemporary Spoken English (PVC) project (Milroy
et al. 1994). This discussion, like the earlier ones cited in the Introduction,
deals with the Tls component of Necte only, which is henceforth referred to
as Necte/Tls.

Necte/Tls includes phonetic transcriptions of each of 64 recordings which
the Tls team produced with the aim of determining whether systematic pho-
netic variation among Tyneside speakers of the period could be significantly
correlated with variation in their social characteristics. To this end the Tls
developed a methodology which was radical at the time and remains so today:
in contrast to the then-universal and still-dominant theory driven approach,
where social and linguistic factors are selected by the analyst on the basis of
some combination of an independently-specified theoretical framework, existing
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Figure 1: The Tyneside area of North-East England

case studies, and personal experience of the domain of enquiry, the Tls pro-
posed a fundamentally empirical approach in which salient factors are extracted
from the data itself and then serve as the basis for model construction.

To realize this research aim using its empirical methodology, the Tls had to
compare the audio interviews it had collected at the phonetic level of represen-
tation. This required that the analog speech signal be discretized into phonetic
segment sequences, or, in other words, to be phonetically transcribed. Two
levels of transcription were produced, a highly detailed narrow one designated
‘State’, and a superordinate ‘Putative Diasystemic Variables’ (Pdv) level which
collapsed some of the finer distinctions transcribed at the ‘State’ level. Like the
earlier studies cited in the Introduction we shall be dealing with the Pdv level,
which defines 156 different phonetic segments; details of the Tls transcription
scheme are available in Jones-Sargent (1983) and Corrigan et al. (2006).

2 Construction of the phonetic variation map

In mathematics, a map is a function. Colloquially, a map is a graphical rep-
resentation of the relationships between and among objects of interest, such as
the relative distances and connectedness of real-world towns and cities. The
latter usage is intended here: the map constructed in this part of the discussion
is a graphical representation of how the variabilities of the phonetic segments
defined by the Tls transcription scheme relate to one another.
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2.1 Data

The data used in this discussion is identical to that used in Moisl, Maguire and
Allen (2006) and Moisl and Maguire (2008). It was created as the basis for
answering the following research question:

Is there nonrandom phonetic variation among speakers in the Ty-
neside speech community as represented by Necte/Tls and, if so,
what are the primary determinants of that variation?

The objects of interest were and are the 64 Necte/Tls speakers, and the
variables describing the speakers are the 146 of the 156 phonetic segments de-
fined by the Tls transcription scheme that are actually used by speakers in their
interviews. Each speaker Si (for i = 1..64) is described by a 146-element vector
v each of whose elements vj (for j = 1..146) represents a different segment, and
the value at vj is the frequency with which Si uses segment j, as in Table1.

Table 1: Vector representation of a Necte/Tls speaker’s phonetic usage

Vector index 1 2 3 . . . 146
Phonetic segment g i t . . . x

Frequency 31 28 123 . . . 0

The set of 64 speaker vectors was assembled into a matrix M in which the 64
rows represent the 64 speakers, the 146 columns represent the 146 Pdv variables,
and the value at Mi,j is the number of times speaker i uses the phonetic segment
j. A fragment of this 64 x 146 matrix M is shown in Table 2.

Table 2: Fragment of the Necte/Tls data matrix M

Vector index 1 2 3 . . . 146
Phonetic segment g i t . . . x

S1 31 28 123 . . . 0
S2 22 8 124 . . . 0
. . . . . . . . . . . . . . . . . .
S64 19 3 73 . . . 0

Because the transcriptions differ substantially in length, M was normalized
by mean document length (Robertson and Spärck-Jones 1994; Spärck-Jones
et al. 2000) to eliminate the distorting effect of that variation on subsequent
analysis. This normalization involved transformation of the row vectors of M
in relation to the average length of the 64 transcriptions.

Mi = Mi(
µ

length(Ti)
) (1)

where Mi is the matrix row representing the frequency profile of transcription
Ti, length(Ti) is the total number of phonetic segments in Ti, and µ is the mean
number of segments across all 64 transcriptions:

µ =
∑

i=1..m

length(Ti)

m
(2)
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The values in each row vectorMi are multiplied by the ratio of the mean number
of phonetic segments per transcription across the whole corpus to the number of
segments in transcription Ti. The longer the document the numerically smaller
the ratio, and vice versa; the effect is to decrease the values in the vectors that
represent long transcriptions, and increase them in vectors that represent short
ones, relative to average transcription length.

2.2 Map construction

The object is to construct a map that describes how the variabilities of the
Necte/Tls phonetic segments relate to another. Principal component analysis
(PCA) is used for this purpose in what follows. A brief outline of PCA is first
given, and it is then used in map construction.

2.2.1 PCA outline

Data are an interpretation of some domain of study. Such an interpretation is
a description of objects in the domain in terms of variables, where a variable is
a symbol, that is, a physical entity to which a meaning is assigned by human
interpreters. Each variable represents an aspect of the domain considered to
be relevant in answering the research question, and the set of selected variables
constitutes the template in terms of which the domain is interpreted. Selection
of variables appropriate to the research question is, therefore, crucial in scientific
research.

Which variables are appropriate in any given case? The fundamental princi-
ple is that the ones chosen must represent all and only those aspects of the
domain which are relevant to the research question. In general, this is an
unattainable ideal. Any domain can be described by an essentially arbitrary
number of finite sets of variables; selection of one particular set can only be
done on the basis of personal knowledge of the domain and of the body of scien-
tific theory associated with it, tempered by personal discretion. In other words,
there is no algorithm for choosing an optimally relevant set of variables. Where,
as in the present case, the research question involves variability, a variable can
be suboptimal in two ways. On the one hand, some variables are more useful
than others in describing the domain: the values taken by a variable like, say,
’income’ are likely to vary much more across a random sample of a human pop-
ulation than, say, the values for ‘number of limbs’, and as such ‘income’ is much
more informative. On the other, two or more variables might by redundant,
that is, correlated, to greater or lesser degrees because they overlap in terms
of the information they represent: ‘age’, ‘height’, and ‘weight’ are correlated in
that, for example, adults generally weigh more than children. Any given data
matrix might contain variables that are suboptimal in one or both these ways.

Given an n-dimensional data matrix containing some significant degree of
suboptimality, where n is the number of columns representing variables, PCA
is a method for expressing most of the total variability across the values in all
n columns using a smaller number k < n of uncorrelated variables, thereby
eliminating any uninformative variables and redundancy in the original matrix.
These new variables are found using the shape of the manifold in the origi-
nal n-dimensional space. Figure 2 shows how this is done using a geometric
interpretation of a fictitious data matrix, where n = 2 for ease of exposition.
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The horizontal and vertical axes represent two variables v1 and v2, the objects
described by these variables are represented as vectors in the two-dimensional
space, and the set of vectors constitutes a manifold.

(a) Correlated variables (b) W1: Main variability (c) W2: Remaining variability

Figure 2: Main directions of variability in a two-dimensional manifold

Visual inspection of Figure 2a shows that v1 and v2 are strongly correlated,
and the main direction of variability in the manifold can be visually identified;
the least-squares line of best fit drawn through the manifold in that direction,
as in Figure 2b, is the first new variable w1: it captures most of the variability
in the manifold, and its length is the amount of variability that it captures.
A second line of best fit is now drawn orthogonally to the first (Figure 2c) to
capture the remaining variability: this is the second new variable w2, and its
length is again the amount of variability it represents. We now have two new
uncorrelated variables in addition to the two original ones. What is gained?
Note the disparity in the lengths of w1 and w2: it’s clear that w1 captures almost
all the variability in the manifold and w2 very little, and one might conclude
that w2 can simply be omitted with minimal loss of information. Doing so
reduces the dimensionality of the original data from 2 to 1. This extends to any
dimensionality. It might, for example, be found that most of the variability in,
say, a 24-dimensional matrix with substantial redundancy can be expressed in,
again say, 3 or 4 uncorrelated variables.

Details of how Pca finds uncorrelated variables are available in most non-
elementary statistics textbooks such as (Tabachnik and Fidell 2005: ch. 13);
the standard reference work is Joliffe (2002), and Shlens (2009) is an excellent
online introduction.

2.2.2 Application of Pca to map construction

The variables in the Necte/Tls matrix M are suboptimal in both of the above
senses. On the one hand, nearly half of them are almost entirely uninformative
in terms of their variability. This can be shown by calculating the variance of
each of the 146 columns, sorting the variances in descending order of magnitude,
and plotting the result. The plot is shown in Figure 3.

The variables from about the 80th to the 146th contribute effectively noth-
ing to the total variability in M . And, on the other hand, there is substantial
redundancy among variables in M . The correlation matrix for the column vec-
tors of M was calculated and examined for significant correlations, where the
threshold value for significant’ is taken to be the de facto standard absolute
value +/− 0.3 (Tabachnik and Fidell 2005: ch.13). Discounting the 146 perfect
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Figure 3: Sorted variances of the columns of M

correlations for variables with themselves on the main diagonal of the matrix,
888 significant positive and negative correlations were found out of a total 9198,
which is 9.7%; the distribution of significant correlations, sorted in descending
order of magnitude, is shown in Figure 4.

Figure 4: Absolute correlations ≥ 0.3 in the correlation matrix for M

Pca was applied to M to eliminate the very low variance variables and
redundancy among the others. The available software implementations of Pca
typically generate a range of outputs; two are important for present purposes:

1. The eigenvector matrix EVECT(M)

For any n-dimensional data matrix D, Pca calculates an n × n matrix
EVECT:

• The n rows of EVECT represent the n variables of D.
• The n columns of EVECT represent the n new variables; these are the

principal components ofD, also known as the eigenvectors after which
EVECT is named. The columns of EVECT are sorted in descending
order of how much of the variability in D each one represents. The
first column c1 represents the direction of greatest variability in D;
in Figure 2c this is w1 The second column c2 represents the second
greatest direction of variability in D; this is w2 in Figure 2c. And so
on to n.
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• The values at EVECTij (for i, j = 1 . . . n) are the coefficents of the
linear combinations of the original variables of D that generate the
principal components. These values are also known as loadings, and
can be thought of as a measure of the contribution which each of the
original variables makes to each of the new ones.

2. The eigenvalue vector EVAL(M)

For any n-dimensional data matrix D, Pca also calculates an n-element
vector EVAL whose values quantify the amount of variability which each
successive eigenvector in EVECT represents. The first value in EVAL
corresponds to the first eigenvector in EVECT and shows the amount
of variability in D that that eigenvector represents; this is the length of
w1 in Figure 2c. The second value in EVAL corresponds to the second
eigenvector in EVECT and shows how much of the remaining variability
in D that that eigenvector represents; this is the length of w2 in Figure
2c. And again so on to n. By examining the values in EVAL, one can
decide the point at which the amount of variability captured by succes-
sive eigenvectors of EVECT becomes negligible and then simply delete all
the eigenvectors beyond that point from EVECT, thereby reducing the
dimensionality. If, for example, the kth alue in EVAL were selected as the
threshold, then the eigenvectors 1 . . . k in EVECT would be retained, and
those from k + 1 to n deleted.

The eigenvector matrix EVECT(M) and the eigenvalue vector EVAL(M) for
M are both far too large to be shown in their entirety, so only small fragments
are given in Tables 3 and 4 by way of example.

Table 3: Fragment of the eigenvector matrix EVECT(M) for M

v1 v2 v3 . . . v146
1. O: goat -0.130 -0.634 -0.079 . . . -0.001
2. eI mine 0.424 -0.082 -0.229 . . . 0.003
3. n nice 0.200 0.066 0.550 . . . 0.003
. . . . . . . . . . . . . . . . . . . . .
146. 5 bird 0.000 0.000 0.000 . . . 0.9985

Table 4: Fragment of the eigenvalue vector EV AL(M) for M

v1 v2 v3 . . . v146
1853.6 1271.5 644.56 . . . 0.0

How many eigenvectors should be retained in any given case? There is
no right answer; selection of a threshold is a matter of judgement by the re-
searcher in relation to the research question. Various criteria have been pro-
posed (Tabachnik and Fidell 2005: ch. 13; Joliffe 2002: ch. 6). A widely used
one is the scree plot, that is, a plot of the values in the main diagonal of the
eigenvalue matrix. The scree plot for EVAL(M) is shown in Figure 5.

It is clear from Figure 5 that the amount of variability in M captured after
the 40th or so eigenvector is negligible, and as such the first 40 eigenvectors
should be retained as the uncorrelated variables to replace the original 146
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Figure 5: Screen plot of the values on the main diagonal of EV AL(M)

variables of M . For expository purposes, however, only the first 10 eigenvectors
are retained, which captures 71% of the variance in M . The result is an 146×10
eigenvector matrix EVECT(M)10 in which the 146 rows represent the original
variables of M , the 10 columns represent the new variables, and the value at
EVECT(M)10,ij (for i = 1 . . . 146, j = 1 . . . 10) is the loading of original variable
i on the new variable j. A fragment is shown in Table 5.

Table 5: Fragment of EVECT(M)10

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
1. O: goat -0.130 -0.634 -0.079 0.164 -0.343 -0.174 0.080 0.018 0.092 0.043
2. eI mine 0.424 -0.082 -0.229 -0.037 -0.136 0.031 -0.145 0.038 0.090 0.115
3. n nice 0.200 0.066 0.550 0.243 -0.121 0.185 0.239 -0.132 -0.010 0.076
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
146. 5 bird 0.000 0.000 0.000 0.000 0.001 0.000 -0.001 0.002 0.000 0.000

Variable v1 O: in Table 5 has a strong negative loading on v2, a significant
negative one on v5, and weak loadings on the remaining variables; variable v2
eI has a significant positive loading on v1 and weak loadings on the remainder;
and so on.

EVECT(M)10 is the basis for the Necte/Tls phonetic variability map.
Geometrically, the column vectors of EVECT(M)10 constitute an orthogonal
basis for a 10-dimensional vector space in which

• each basis vector represents one of the 10 main directions of variability in
M ,

• the values in each of the row vectors are the coordinates of one of the
original 146 phonetic segment variables in the 10-dimensional space, and

• the set of 146 row vectors constitutes a manifold representing the variabil-
ity of these phonetic segment variables in the space.

The relatively high dimensionality of the space prevents the manifold be-
ing directly visualized via two or three dimensional plotting, but hierarchical
cluster analysis provides an indirect visualization by representing the similar-
ity relations of the vectors in the manifold as a cluster tree. The row vectors
of EVECT(M)10 were hierarchically cluster analyzed using the squared Eu-
clidean distance and the complete link clustering algorithm; other clustering
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algorithms were tried, with similar results. The tree in Figure 6 only includes
the 80 highest-variance variables in M because, as noted earlier, the remainder
are negligible in terms of the amount of total variability they contribute, and
including them would both clutter the tree and make it too large to display.

Figure 6: Cluster analysis of the first 80 rows of EVECT(M)10

Column 1 of the labels at the leaves of the tree lists the codes of the phonetic
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segments in the Tls transcription scheme for convenience of cross-referencing
with the code list in Jones-Sargent (1983) and at the Necte website (Corrigan
et al. 2006), and column 2 lists the phonetic symbols themselves together with
an example of each.

The cluster tree in Figure 6 is the map which this discussion sets out to
create. The variability of each of the 80 highest-variance phonetic segments in
relation to that of all the others can be seen by direct inspection, and the map
thereby provides a comprehensive basis for understanding of phonetic variation
in the Necte/Tls speaker community. Most fundamental to that understand-
ing is the observation, based on the well defined cluster structure, that the
pattern of phonetic variation in the community was strongly non-random.

3 Conclusion

This discussion sets out to develop existing work by Jones-Sargent (1983), Moisl
and Jones (2005), and Moisl, Maguire and Allen (2006) on phonetic variation in
Tyneside English as represented by the Newcastle Electronic Corpus of Tyneside
English by constructing a map that comprehensively describes the pattern of
phonetic variation across the Necte/Tls speakers. This map is a hierarchical
cluster tree which represents the variability of the phonetic segments in the
Necte transcription scheme in a vector space whose orthogonal axes represent
the main directions of variability in the Necte data.
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