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Abstract. Most science and engineering disciplines recognize that 
application of linear analytical methods to data containing nonlinearities can 
distort results, and in response have developed mathematically and 
statistically based methods for dealing with nonlinearity. In linguistics, 
however, there has thus far been little recognition of the possibility that there 
might be nonlinearity in data abstracted from speech and text corpora or, 
where found, what the implications for analysis are. The present paper 
addresses this issue in three main parts. The first part outlines the nature of 
data nonlinearity, the second reviews existing methods for detection of 
nonlinearity and proposes a way of measuring nonlinear relationships between 
data objects, and, using these methods, the third identifies and quantifies the 
degree of nonlinearity is present in data abstracted from the Diachronic 
Electronic Corpus of Tyneside English, a dialect speech corpus. 
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Introduction 

Most science and engineering disciplines recognize that application of linear 
analytical methods to data containing nonlinearities can distort results, and in 
response have developed methods for dealing with nonlinearity [1]. In linguistics, 
however, there has thus far been little recognition of the possibility that there might 
be nonlinearity in data abstracted from speech and text corpora or, where found, what 
the implications for analysis are [2]. The present paper addresses this issue in three 
main parts. The first part outlines the nature of data nonlinearity, the second reviews 
existing methods for detection of nonlinearity and proposes a way of measuring 
nonlinear relationships between data objects, and, using these methods, the third 
identifies and quantifies the degree of nonlinearity is present in data abstracted from 
the Diachronic Electronic Corpus of Tyneside English, a dialect speech corpus [3]. 
 
1. Nonlinearity  
 
1.1 Nonlinearity in Natural Processes 

In natural processes there is a fundamental distinction between linear and 
nonlinear behavior. Linear processes have a constant proportionality between cause 
and effect. If a ball is kicked x hard and it goes y distance, then a 2x kick will appear 
to make it go 2y, a 3x kick 3y, and so on. Nonlinearity is the breakdown of such 
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proportionality. In the case of our ball, the linear relationship increasingly breaks 
down as it is kicked harder and harder. Air and rolling resistance become significant 
factors, so that for, say, 5x it only goes 4.9 y, for 6x 5.7y, and again so on until 
eventually it bursts and goes hardly any distance at all. Such nonlinear effects 
pervade the natural world and gives rise to a wide variety of complex and often 
unexpected --including chaotic—behaviours [4].  
 
1.2 Nonlinearity in Data 

Data is a description of objects involved in a natural process of interest in terms 
of a set of variables. Given m objects described by n variables, a standard 
representation of data for computational analysis is a matrix M in which each of the 
m rows represents a different object, each of the n columns represents a different 
variable, and the value at Mi.j

 describes object i in terms of variable j, for i = 1..m, j = 
1..n. The matrix thereby makes the link between the researcher's conceptualization of 
the process in terms of the semantics of the variables s/he has chosen and the state of 
the world, and allows the resulting data to be taken as a representation of the process 
based on empirical observation. Assuming that the representation is a faithful one, 
any nonlinearity in the process will be reflected in the data. 

M is linear when the functional relationships between all its variables, that is, the 
values in its columns, conform to the mathematical definition of linearity. In 
mathematics, a linear function f is one that satisfies the following properties, where x 
and y are variables and a is a constant [5]: 
• Additivity: f(x+y) = f(x) + f(y) - adding the results of f applied to x and y 

separately is equivalent to adding x and y and then applying f to the sum. 
• Homogeneity: f(ax) = af(x) - multiplying the result of applying f to x by a 

constant is equivalent to multiplying x by the constant and then applying f to the 
result. 

A function which does not satisfy these two properties is nonlinear, and so is a data 
matrix in which the relationship between two or more of its columns is nonlinear. 
 
2. Nonlinearity Detection 

It is not in general obvious whether a given data matrix contains nonlinearity, and 
the only way to find out if it does is to test for it. In practice, data abstracted from 
observation is likely to contain at least some noise, and it is consequently unlikely 
that strictly linear relationships between variables will be found. Instead, one is 
looking for degrees of deviation from linearity. Three ways of doing this are 
presented. Two of them are well-established, and the third is a proposal based on 
graph distance measurement. 
 
2.1 Graphical Identification of Nonlinearity 

The graphical method is based on pairwise scatter-plotting of variables and 
subsequent visual identification of deviation from linearity. In figure 1a, for example, 
the essentially linear relationship of variables v1 and v2 is visually clear despite the 
scatter, and the nonlinear relationship in figure 2b equally so. 
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a: Linear relationship of v1 and v2 b: Nonlinear relationship of v1 and v2 
 

Figure 1: Scatter plots of linear and nonlinear bivariate data 
 

Looking for nonlinearity in this way involves plotting of all possible distinct pairings 
of data variables and visual identification of any nonlinearity. This can be a fairly 
onerous but generally not insuperable undertaking where the number of variables is 
large. A more serious problem is that visual interpretation of scatter plots is 
subjective, and where the shape of the relationship between variables is not as 
unambiguous as those in figure 1 different observers are likely to draw different 
conclusions. For example, is the relationship in figure 2 linear with substantial noise, 
or nonlinear? 

 
 

Figure 2: Possibly noisy linear, possibly nonlinear bivariate data 
 
2.2 Identification of Nonlinearity Based on Regression 

To be fully useful, graphically-based identification of nonlinearity needs to be 
supplemented by quantitative measures of the degree of nonlinearity. Regression 
analysis provides this [6, 7]. Regression attempts to model the relationship between 
one or more independent variables and a dependent variable whose values are 
hypothesized to be causally determined by the independent one(s), by finding a 
mathematical function which best fits the data distribution. Because the aim is simply 
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to decide whether given data is linear or nonlinear rather than to find the optimal 
mathematical fit for it, the discussion confines itself to parametric regression. 

The first step in parametric regression is to select a mathematical model that 
relates the values of the dependent variable y to those of the independent variable x. 
A linear model proposes a linear relationship of the general form 

y = ax + b (1) 
where a  and b are scalar constants representing the slope of the line and the intercept 
of the line with the y-axis respectively; a and b are unknown and are to be 
determined. This is done by finding values for a and b such that the sum of squared 
residuals, that is, distances from the line of best fit to the dependent-variable values 
on the y-axis, is minimized. The line determined by the values for a  and b is the best 
linear fit for the hypothesized relationship between x and y. A nonlinear model 
proposes a nonlinear relationship between x and y. Numerous nonlinear models are 
available. Frequently used ones in regression are polynomials with the general form 

y = anx
n + an-1x

n-1… + a2x
2 + a1x + a0 (2) 

where the an..a0 are constants and n is the order of the polynomial; where n = 1 the 
polynomial is first-order, where n = 2 it as second-order and so on, though 
traditionally orders 1, 2, and 3 are called ‘linear’, ‘quadratic’, and ‘cubic’ 
respectively. As with linear regression, nonlinear regression finds the line of best fit 
by calculating the coefficients an..a0 which minimize the sum of squared residuals 
between the line and the y values.  

Using regression to identify nonlinearity in data would appear simply to be a 
matter of comparing the goodness of fit of the linear model with that of whatever 
nonlinear model has been chosen: the data is linear if a straight line provides as good 
a fit as any other mathematical function [11], and nonlinear if the nonlinear model is 
a significantly better fit than the linear one [7]. In figure 3, for example, the cubic 
model looks like it fits the data best, the quadratic less well, and the linear least well; 
based on visual inspection, one would say that this data is nonlinear. 

 

 
 

Figure 3: Linear, quadratic and cubic polynomials with curves of best fit 
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Such direct visual interpretation can be corroborated by residual analysis and 

various goodness-of-fit statistics like the runs test, summed square of errors (SSE), 
root mean squared error (RMSE), and R2 [8 - 12]. These statistics all look reasonable 
but have an underlying problem. For a given family of models such as polynomials, 
the model with more parameters typically fits the data better than one with fewer; the 
more parameters the more convoluted the line of best fit can be and thus the closer it 
can get to the data values, thereby reducing SSE and affecting RMSE and R2. Use of 
the foregoing statistics for identification of nonlinearity therefore implies that the 
best model is always the one which comes closest to the data points. Where the 
relationship between variables is perfectly linear this is not a problem because 
increasing the number of parameters will not affect the statistics: the linear model is 
optimal. But, as already noted, empirical data typically contains noise, and that is 
where the problem lies. Given data that is not perfectly linear and a model for it with 
n > 2 parameters, there are two possible interpretations. On the one hand, it may be 
that the model is fitting noise and thereby obscuring a relationship between the 
variables which is better captured by a model with fewer than n parameters. On the 
other, it may be that the nonlinearity is not noise but a genuine reflection of the 
nonlinear relationship between those aspects of the domain which the data describes, 
and that the model with n parameters is the preferred one. Which interpretation is 
correct? Knowledge of the likelihood and scale of noise in the domain can help in 
deciding, but this is supplemented by an extensive range of model selection methods 
[13, ch.5]. Two of the more frequently used methods are the extra sum-of-squares F-
test and Akaike’s information criterion [14; 7, ch.22]. 
 
2.3 Identification of Nonlinearity Based on Graph Distance 

An alternative to regression proposed here is to make the ratio of mean nonlinear 
to mean linear distances among points on the data manifold the basis for nonlinearity 
identification. This is motivated by the observation that the shape of a manifold 
represents the real-world interrelationship of objects described by variables, and 
curvature in the manifold represents the nonlinear aspect of that interrelationship. 
Linear metrics ignore the nonlinearity and will therefore always be smaller than 
nonlinear ones; a disparity between nonlinear and linear measures consequently 
indicates nonlinearity, and their ratio indicates the degree of disparity. 

Given a set X, a metric [15; 16] is a function d:X * X > R if, for all x,y,z ϵ X, the 
following properties hold: 

• d(x,y) >= 0, that is, the distance between any two vectors  is non-negative. 
• d(x,y) = 0 if and only if x = y, that is, the distance from a vector to itself is 

0, and for vectors which are not identical is greater than 0. 
• d(x,y) = d(y,x), that is, distances are symmetrical. 
• d(x,z) <= d(x,y) + d(y,z), that is, the distance between any two vectors is 

always less than or equal to the distance between them and a third vector.  
A metric space M(V,d) is a vector space V on which a metric d is defined, which 
returns the distance between any two points in the space.  

Numerous distance metrics exist [16]. For present purposes these are divided into 
two types: linear metrics, where the distance between two points on a manifold is the 
length of the straight line joining the points without reference to the shape of the 
manifold, and nonlinear metrics where the distance is the length of the shortest line 
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joining them along the surface of the manifold, which need not be flat. Where the 
manifold is flat, linear and nonlinear measures are identical. Where it is curved, 
however, linear and nonlinear measurements can differ to varying degrees depending 
on the nature of the curvature, as shown in figure 4. 
 

   

 
Figure 4: Linear and nonlinear distance on flat and curved manifolds 

 
Euclidean distance is here used for linear measurement and geodesic distance for 

nonlinear. Euclidean distance is well known and commonly used [16]; geodesic 
distance requires a little explanation. Etymologically, the word ‘geodesy’ comes from 
Greek geodaisia, ‘division of the earth’; geodesic distance is the shortest distance 
between any two points on the Earth measured along its curved surface. 
Mathematically, geodesic distance is a generalization of linear to nonlinear distance 
measurement in a space: the geodesic distance g(x,y) is the shortest distance between 
two points x and y on a manifold measured along its possibly-curved surface [16, 
ch.6]. What follows develops a method for approximating geodesic distance on 
manifolds using graph distance. Figure 5 shows a small nonlinear matrix M and the 
associated  scatterplot.  

 

 V1 V2 
A 0.27 0.20 
B 0.32 0.50 
C 0.40 0.70 
D 0.50 0.80 
E 0.60 0.70 
F 0.68 0.50 
G 0.73 0.20 

 

 
 

Figure 5: Nonlinear data matrix and corresponding scatterplot 
 

For a data matrix M with m rows and n columns, a Euclidean distance matrix D is an 
m x m matrix each of whose values Di,j (for i, j = 1..m) is the Euclidean distance from 
row i to  j of M in n-dimensional space. Figure 6 shows D for M in figure 5. 



Error! No text of specified style in document.  7 
 

 A B C D E F G 
A 0 .30 .52 .64 .60 .51 .46 
B .30 0 .22 .35 .34 .36 .51 
C .52 .22 0 .14 .20 .34 .60 
D .64 .35 .14 0 .14 .35 .64 
E .60 .34 .20 .14 0 .22 .52 
F .51 .36 .34 .35 .22 0 .30 
G .46 .51 .60 .64 .52 .30 0 

 

 
 

Figure 6: Euclidean distance matrix for the data in figure 5 and interpretation of the manifold 
as a connected graph with Euclidean distances as arc labels. 

 
M is interpretable as a connected graph G each of whose arcs from i to j is labelled 
with the Euclidean distance between Gi and Gj, as shown in figure 6; the distance 
between node A and node B, for example, is given in the table as 0.30, between A and 
G as 0.46, and so on; only two arcs are labelled to avoid clutter.  

A spanning tree for G is an acyclic subgraph of G which contains all the nodes in 
G and some subset of the arcs of G [17]. A minimum spanning tree of G, as its name 
indicates, is a spanning tree which contains the minimum number of arcs required to 
connect all the nodes in G, or, if the arcs have weights, the smallest sum of weights. 
The minimum spanning tree for G in figure 6 is shown in figure 7, with the arcs 
comprising the tree A>B>C>D>E>F>G emboldened. 

 

 
 

Figure 7: Minimum spanning tree for the graph in figure 6 
 

A minimum spanning tree can be used to approximate the geodesic distances 
using the Euclidean distances because the distance between any two nodes is 
guaranteed to be minimal; in figure 7, from A to B the geodesic and Euclidean 
distances are identical, but from A to C the geodesic is AB + BC rather than the 
Euclidean AC, and so on. Figure 8 shows a table constructed in this way together 
with the corresponding Euclidean one. 
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  A B C D E F G 
A 0 .30 .52 .64 .60 .51 .46 
B .30 0 .22 .35 .34 .36 .51 
C .52 .22 0 .14 .20 .34 .60 
D .64 .35 .14 0 .14 .35 .64 
E .60 .34 .20 .14 0 .22 .52 
F .51 .36 .34 .35 .22 0 .30 
G .46 .51 .60 .64 .52 .30 0 

  

  A B C D E F G 
A 0 .30 .52 .66 .80 1.0 1.3 
B .30 0 .22 .36 .50 .72 1.0 
C .52 .22 0 .14 .28 .50 .80 
D .66 .36 .14 0 .14 .36 .66 
E .80 .50 .28 .14 0 .22 .52 
F 1.0 .72 .50 .36 .22 0 .30 
G 1.3 1.0 .80 .66 .52 .30 0 

  
a. Euclidean distance matrix for M.  

•         Sum of distances: 16.52 
•         Mean distance: 0.34 
•         Distance A-G: 0.46 

b. Graph distance matrix for M.  
•         Sum of distances: 22.60 
•         Mean distance: 0.46 
•         Distance A-G: 1.3 

Figure 8: Euclidean and geodesic distance matrices for the data in figure 14a 

The sum of distances and mean distance for the Euclidean matrix are both 
substantially less than for the graph, and the graph distance between A and G is 
almost three times larger than the Euclidean, which figure 7 confirms visually. 

The ratio of mean graph to mean Euclidean distance between all pairs of nodes in 
a graph gives a measure of the amount of nonlinearity in a data manifold. If the 
manifold is linear then the two means are identical and the ratio is 1; any nonlinearity 
makes the mean of graph distances greater than the Euclidean mean, and the ratio is 
greater than 1 in proportion of the degree of nonlinearity. Figure 9 is an example 
based on the Swiss roll data extensively used in discussions of nonlinearity, and 
shows the path of the shortest graph distance from A to B. 

 

 
Figure 9: Euclidean and graph distances on a nonlinear data manifold 

 
The ratio of mean graph to mean Euclidean distance in figure 9 is 3.7, and the ratio of 
graph to Euclidean distance from A to B is 6.6, that is, almost seven times as far. 



Error! No text of specified style in document.  9 
 
3. Case Study 

This final section presents a case study to show that substantial nonlinearity does 
in fact occur in a particular speech corpus. 
 
3.1 Corpus Data 

The Diachronic Electronic Corpus of Tyneside English (DECTE) [3] includes 
phonetic transcriptions of 63 audio recordings, and the data for what follows is 
abstracted from these. Each speaker was represented by a 156-element vector each 
element of which represents a different phonetic segment in the DECTE transcription 
scheme, and the value at any given element is the frequency with which the speaker 
uses the associated segment in his or her interview. The set of speaker vectors was 
assembled into a matrix M in which the rows i (for i = 1..63) represent the speakers, 
the columns j (for j = 1..156) represent the phonetic segments, and the value at Mi,j is 
the number of times speaker i uses segment j. M was normalized using mean 
document length [18] to remove the effect of variation in interview  length.  
 
3.2 Identification of Nonlinearity in M 

Using graphical and regression-based methods, no strictly or even approximately 
linear relationships between pairs of variables were found in M. In a few cases the 
relationships looked random, but most showed a discernible pattern; the segment pair ɔ: and ɑ: is representative and is used as the basis for discussion in what follows. 
 
3.2.1 Graphical Identification of Nonlinearity  

A scatter plot of ɔ: on the horizontal axis and ɑ: on the vertical in figure 10 shows 
a visually clear nonlinear relationship. 

 

 
Figure 10: Scatter plot of column values in M representing the phonetic segments ɔ: 

and ɑ: 
 
3.2.2 Regression-based Identification of Nonlinearity 
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Using ɔ: as the independent variable and ɑ: as the dependent, a selection of 

polynomials was used to model the relationship. These are shown in figure 11. 
 

 
Figure 11: Polynomial regression models of the ɔ: / ɑ: relationship 

 
Visually, the linear model appears to fit least well and the 5th-degree polynomial best, 
as expected, and this is confirmed by runs tests, residual plots, and the goodness of fit 
statistics in table 1. 

 
Table 1: Goodness of fit statistics for figure 11 

 
 SSE RMSE R2 
Degree 1 12420 15.03 0.3768 
Degree 2 10480 13.93 0.4741 
Degree 3 10390 14.00 0.4786 
Degree 5 8821 13.15 0.5574 

 
The extra sum-of-squares F-test and AIC test further support the indications so far: 
that the first-order model is worst, that second-order is better than third, but that the 
fifth-order model is preferred.  
 
3.2.3 Graph Distance-based Identification of Nonlinearity 

The Euclidean 63 x 63 distance matrix E was calculated for M, the minimum 
spanning tree for E was found, and the graph distance matrix G was derived by tree 
traversal, all as described in the foregoing discussion. The rows of both E and G were 
then linearized into vectors of length 63 x 63 = 3969, sorted, and co-plotted to get a 
representation of the relationship between linear and graph distances in the two 
matrices. This is shown in figure 12. 
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Figure 12: Comparison of Euclidean and graph distances for M 

 
The graph distances between and among the speakers in M are consistently larger 
than the Euclidean ones over the entire range. This is summarized in the ratio 
mean(G) / mean(E) of mean distances, which is 3.89. On these indicators, M can be 
said to contain a substantial amount of nonlinearity. 
 
Conclusion 

This discussion set out to show how nonlinearity can be detected in data derived 
from linguistic corpora using established graphical and regression-based methods and 
proposing a method based on approximation of geodesic distance measurement with 
graph distance. These methods were applied to frequency data abstracted from 
phonetic transcriptions of speech from DECTE, a dialect corpus, and all the methods 
agreed that substantial nonlinearity was present. DECTE is typical of the many 
digital electronic language corpora that have appeared in recent years [19,20], and it 
is reasonable to suspect that nonlinearity will be present in data abstracted from these 
as well. Where, therefore, measurement of distance among data objects is a factor in 
analysis, as it is, for example, in cluster analysis, the data should first be screened for 
nonlinearity and the selection of analytical method should be guided by the result. 
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