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Abstract. Most science and engineering disciplines recognthat
application of linear analytical methods to datataming nonlinearities can
distort results, and in response have developedhemmsttically and
statistically based methods for dealing with ncedirity. In linguistics,
however, there has thus far been little recognitibthe possibility that there
might be nonlinearity in data abstracted from speaod text corpora or,
where found, what the implications for analysis.af&e present paper
addresses this issue in three main parts. Thep@dtoutlines the nature of
data nonlinearity, the second reviews existing wdshfor detection of
nonlinearity and proposes a way of measuring neatimelationships between
data objects, and, using these methods, the téndtifies and quantifies the
degree of nonlinearity is present in data abstdadtem the Diachronic
Electronic Corpus of Tyneside Englighdialect speech corpus.
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Introduction

Most science and engineering disciplines recogtiiee application of linear
analytical methods to data containing nonlineasit@n distort results, and in
response have developed methods for dealing withingarity [1]. In linguistics,
however, there has thus far been little recognitibthe possibility that there might
be nonlinearity in data abstracted from speechtextcdcorpora or, where found, what
the implications for analysis are [2]. The presemper addresses this issue in three
main parts. The first part outlines the natureatbchonlinearity, the second reviews
existing methods for detection of nonlinearity gomposes a way of measuring
nonlinear relationships between data objects, asthg these methods, the third
identifies and quantifies the degree of nonlingastpresent in data abstracted from
the Diachronic Electronic Corpus of Tyneside Engliatdialect speech corpus [3].

1. Nonlinearity

1.1 Nonlinearity in Natural Processes

In natural processes there is a fundamental digimdetween linear and
nonlinear behavior. Linear processes have a canptaportionality between cause
and effect. If a ball is kicke® hard and it goeg distance, then axXick will appear
to make it go £, a X kick 3y, and so on. Nonlinearity is the breakdown of such
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proportionality. In the case of our ball, the linealationship increasingly breaks
down as it is kicked harder and harder. Air andrglresistance become significant
factors, so that for, sayx5t only goes 4.9, for 6&x 5.7, and again so on until
eventually it bursts and goes hardly any distancella Such nonlinear effects
pervade the natural world and gives rise to a wideety of complex and often
unexpected --including chaotic—behaviours [4].

1.2 Nonlinearity in Data
Data is a description of objects involved in a ratprocess of interest in terms

of a set of variables. Givem objects described by variables, a standard

representation of data for computational analysia matrix M in which each of the

m rows represents a different object, each of ihmlumns represents a different

variable, and the value at; Mescribes objedtin terms of variablg, fori = 1.m,j =

1.n. The matrix thereby makes the link between theawesher's conceptualization of

the process in terms of the semantics of the vi@sadlhe has chosen and the state of

the world, and allows the resulting data to be take a representation of the process
based on empirical observation. Assuming that #peesentation is a faithful one,
any nonlinearity in the process will be reflectadtie data.

M is linear when the functional relationships betwall its variables, that is, the
values in its columns, conform to the mathematidefinition of linearity. In
mathematics, a linear functidris one that satisfies the following propertiesgvex
andy are variables anais a constant [5]:

o Additivity: f(x+ty) = f(x) + f(y) - adding the results df applied tox andy
separately is equivalent to addingndy and then applyinfjto the sum.

* Homogeneity:f(ax) = af(x) - multiplying the result of applying to x by a
constant is equivalent to multiplyingby the constant and then applyiinip the
result.

A function which does not satisfy these two pragsris nonlinear, and so is a data

matrix in which the relationship between two or mof its columns is nonlinear.

2. Nonlinearity Detection

It is not in general obvious whether a given daédrix contains nonlinearity, and
the only way to find out if it does is to test fior In practice, data abstracted from
observation is likely to contain at least some @oand it is consequently unlikely
that strictly linear relationships between varisbigill be found. Instead, one is
looking for degrees of deviation from linearity. rEe ways of doing this are
presented. Two of them are well-established, aedthird is a proposal based on
graph distance measurement.

2.1 Graphical Identification of Nonlinearity

The graphical method is based on pairwise scalbtting of variables and
subsequent visual identification of deviation fronearity. In figure 1a, for example,
the essentially linear relationship of variabldsandv2 is visually clear despite the
scatter, and the nonlinear relationship in figuseegually so.
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a: Linear relationship of1 andvZ b: Nonlinear relationship ofl andv2

Figure 1: Scatter plots of linear and nonlineaahate data

Looking for nonlinearity in this way involves plotg of all possible distinct pairings
of data variables and visual identification of amnlinearity. This can be a fairly
onerous but generally not insuperable undertakihgrevthe number of variables is
large. A more serious problem is that visual intetstion of scatter plots is

subjective, and where the shape of the relationbeigveen variables is not as
unambiguous as those in figure 1 different obsenae likely to draw different

conclusions. For example, is the relationshipguife 2 linear with substantial noise,
or nonlinear?
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Figure 2: Possibly noisy linear, possibly nonlineamariate data

2.2 Identification of Nonlinearity Based on Regression

To be fully useful, graphically-based identificatiof nonlinearity needs to be
supplemented by quantitative measures of the degfreenlinearity. Regression
analysis provides this [6, 7]. Regression attenpt®odel the relationship between
one or more independent variables and a dependeidble whose values are
hypothesized to be causally determined by the iemégnt one(s), by finding a
mathematical function which best fits the datariistion. Because the aim is simply
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to decide whether given data is linear or nonlinedher than to find the optimal
mathematical fit for it, the discussion confineself to parametric regression.

The first step in parametric regression is to $eteenathematical model that
relates the values of the dependent varighite those of the independent variakle
A linear model proposes a linear relationship efgeneral form

y=ax+1! (1)
wherea andb are scalar constants representing the slope dihthand the intercept
of the line with the y-axis respectivelg and b are unknown and are to be
determined. This is done by finding values d&andb such that the sum of squared
residuals, that is, distances from the line of ffiesb the dependent-variable values
on they-axis, is minimized. The line determined by theueasl fora andb is the best
linear fit for the hypothesized relationship betweeandy. A nonlinear model
proposes a nonlinear relationship betwaeandy. Numerous nonlinear models are
available. Frequently used ones in regressionayapmials with the general form

y = axX"+ anaX.. + ax’ + aX + g (2)
where thea,..a are constants andis the order of the polynomial; whene= 1 the
polynomial is first-order, wheren = 2 it as second-order and so on, though
traditionally orders 1, 2, and 3 are called ‘lingaquadratic’, and ‘cubic’
respectively. As with linear regression, nonlineggression finds the line of best fit
by calculating the coefficients,..ay which minimize the sum of squared residuals
between the line and tlyevalues.

Using regression to identify nonlinearity in datauld appear simply to be a
matter of comparing the goodness of fit of thedimeodel with that of whatever
nonlinear model has been chosen: the data is lihaastraight line provides as good
a fit as any other mathematical function [11], awodlinear if the nonlinear model is
a significantly better fit than the linear one [W. figure 3, for example, the cubic
model looks like it fits the data best, the quadrigss well, and the linear least well;
based on visual inspection, one would say thatdhia is nonlinear.

T =013 - 4.4
y=o et Cubic
15} v = 0.0015"%2 - 0.018*x - 1.8 b
ol V7 8.5e-005%%" - 0.011%%% + 0.5%x - 6.4 4  Quadratic
Linear
10 - - - - -
0 20 40 60 80 100

Figure 3: Linear, quadratic and cubic polynomiaithwurves of best fit
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Such direct visual interpretation can be corrobmiaby residual analysis and
various goodness-of-fit statistics like the runst,tsummed square of errors (SSE),
root mean squared error (RMSE), arfd®&- 12]. These statistics all look reasonable
but have an underlying problem. For a given faroflynodels such as polynomials,
the model with more parameters typically fits tla¢adbetter than one with fewer; the
more parameters the more convoluted the line dffiiesan be and thus the closer it
can get to the data values, thereby reducing S8mfiecting RMSE and RUse of
the foregoing statistics for identification of nmarity therefore implies that the
best model is always the one which comes closesh@odata points. Where the
relationship between variables is perfectly lindais is not a problem because
increasing the number of parameters will not affbet statistics: the linear model is
optimal. But, as already noted, empirical datadgily contains noise, and that is
where the problem lies. Given data that is notguthf linear and a model for it with
n > 2 parameters, there are two possible interpoetatOn the one hand, it may be
that the model is fitting noise and thereby obsayra relationship between the
variables which is better captured by a model véther thann parameters. On the
other, it may be that the nonlinearity is not nd®&g a genuine reflection of the
nonlinear relationship between those aspects ofitheain which the data describes,
and that the model with parameters is the preferred one. Which interpoetas
correct? Knowledge of the likelihood and scale oisa in the domain can help in
deciding, but this is supplemented by an extensinge of model selection methods
[13, ch.5]. Two of the more frequently used methaxsthe extra sum-of-squares F-
test and Akaike’s information criterion [14; 7, 28)].

2.3 Identification of Nonlinearity Based on Graph Distance

An alternative to regression proposed here is tkentlae ratio of mean nonlinear
to mean linear distances among points on the datafoid the basis for nonlinearity
identification. This is motivated by the observatithat the shape of a manifold
represents the real-world interrelationship of ofgedescribed by variables, and
curvature in the manifold represents the nonlirespect of that interrelationship.
Linear metrics ignore the nonlinearity and will thflere always be smaller than
nonlinear ones; a disparity between nonlinear andat measures consequently
indicates nonlinearity, and their ratio indicates tlegree of disparity.

Given a set X, a metric [15; 16] is a function &:X > R if, for all x,y,z € X, the
following properties hold:
« d(x,y) >=0, that is, the distance between any two vecie non-negative.
« d(x,y) = 0if and only ifx =y, that is, the distance from a vector to itself is
0, and for vectors which are not identical is gee#tan O.
o d(x,y) =dfy,x), that is, distances are symmetrical.
o d(x,2) <= dy) + dly,2), that is, the distance between any two vectors is
always less than or equal to the distance betwesmn and a third vector.
A metric space M(M) is a vector space V on which a mettiés defined, which
returns the distance between any two points irspiaee.

Numerous distance metrics exist [16]. For presenpgses these are divided into
two types: linear metrics, where the distance betw&o points on a manifold is the
length of the straight line joining the points vath reference to the shape of the
manifold, and nonlinear metrics where the distasdbe length of the shortest line
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joining them along the surface of the manifold, evthneed not be flat. Where the
manifold is flat, linear and nonlinear measures identical. Where it is curved,
however, linear and nonlinear measurements caer ddfvarying degrees depending
on the nature of the curvature, as shown in figure
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Figure 4: Linear and nonlinear distance on flat emdfed manifolds

Euclidean distance is here used for linear measemeand geodesic distance for
nonlinear. Euclidean distance is well known and mammly used [16]; geodesic
distance requires a little explanation. Etymolothycdhe word ‘geodesy’ comes from
Greekgeodaisia ‘division of the earth’; geodesic distance is 8fertest distance
between any two points on the Earth measured alibmgcurved surface.
Mathematically, geodesic distance is a generatinadf linear to nonlinear distance
measurement in a space: the geodesic dis@g(mgg is the shortest distance between
two pointsx andy on a manifold measured along its possibly-curvedase [16,
ch.6]. What follows develops a method for approxinga geodesic distance on
manifolds using graph distance. Figure 5 shows allsmonlinear matrix M and the
associated scatterplot.
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Figure 5: Nonlinear data matrix and correspondiaitsrplot

For a data matrix M wittm rows andh columns, a Euclidean distance matrix D is an
mx m matrix each of whose values;or i, j = 1.m) is the Euclidean distance from
rowi to j of M in n-dimensional space. Figure 6 shows D for M in fegbr
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A B c D E Fl 08
A 0O 30 52 .64 .60 .51

B .30 O 22 35 34 3606
C 52 22 0 .14 20 4,
D 64 3 .14 0 .14 3%
E 60 34 20 .14 0 .2259
F 51 .36 .34 .35 .22 D

G 46 51 .60 .64 52 .3
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Figure 6: Euclidean distance matrix for the datfigare 5 and interpretation of the manifold
as a connected graph with Euclidean distancescdalssls.

M is interpretable as a connected graph G eachhobw arcs from toj is labelled
with the Euclidean distance betweepadd G, as shown in figure 6; the distance
between node A and node B, for example, is givehértable as 0.30, between A and
G as 0.46, and so on; only two arcs are labelledvoid clutter.

A spanning tree for G is an acyclic subgraph of lidctv contains all the nodes in
G and some subset of the arcs of G [17iniAimumspanning tree of G, as its name
indicates, is a spanning tree which contains thrermim number of arcs required to
connect all the nodes in G, or, if the arcs havighis, the smallest sum of weights.
The minimum spanning tree for G in figure 6 is show figure 7, with the arcs
comprising the tree A>B>C>D>E>F>G emboldened.
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Figure 7: Minimum spanning tree for the graph gufe 6

A minimum spanning tree can be used to approxintaegeodesic distances
using the Euclidean distances because the disthateeen any two nodes is
guaranteed to be minimal; in figure 7, from A totl geodesic and Euclidean
distances are identical, but from A to C the geimdes AB + BC rather than the
Euclidean AC, and so on. Figure 8 shows a tablestoacted in this way together
with the corresponding Euclidean one.
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A B C D E F G A B C D E F G
A O 30 52 64 .60 51 .46 A 0 30 52 66 .80 1.0 1.3
B 30 0 .22 35 .34 36 .51 B .30 0 22 36 50 .72 1.0
C 52 22 0 14 20 .34 .60 C 52 22 0 14 28 50 .80
D 64 35 .14 0 .14 35 .64 D 66 .36 .14 0 14 36 .66
E 60 34 20 .14 0 22 .52 E 80 .50 .28 .14 0 22 52
F 51 36 .34 35 22 0 .30 F 10 .72 50 .36 .22 0 .30
G .46 51 60 .64 52 30 O G 13 10 80 66 .52 30 O

a. Euclidean distance matrix for | b. Grapl distance matrix for M

. Sum of distances: 16.52 . Sum of distances: 22.60
. Mean distance: 0.34 . Mean distance: 0.46
. Distance A-G: 0.46 . Distance A-G: 1.3

Figure 8: Euclidean and geodesic distance matficdabe data in figure 14a

The sum of distances and mean distance for theidead matrix are both
substantially less than for the graph, and the lgmigtance between A and G is
almost three times larger than the Euclidean, whigare 7 confirms visually.

The ratio of mean graph to mean Euclidean distaetgeen all pairs of nodes in
a graph gives a measure of the amount of nonlityearia data manifold. If the
manifold is linear then the two means are identiced the ratio is 1; any nonlinearity
makes the mean of graph distances greater thaButielean mean, and the ratio is
greater than 1 in proportion of the degree of mmdrity. Figure 9 is an example
based on the Swiss roll data extensively used $cudsions of nonlinearity, and
shows the path of the shortest graph distance Ar¢onB.
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Figure 9: Euclidean and graph distances on a remlidata manifold

The ratio of mean graph to mean Euclidean distanfigure 9 is 3.7, and the ratio of
graph to Euclidean distance from A to B is 6.6f thaalmost seven times as far.
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3. Case Study
This final section presents a case study to shaivdhbstantial nonlinearity does
in fact occur in a particular speech corpus.

3.1 Corpus Data

The Diachronic Electronic Corpus of Tyneside Engli€ECTE) [3] includes
phonetic transcriptions of 63 audio recordings, #mel data for what follows is
abstracted from these. Each speaker was representedl56-element vector each
element of which represents a different phonetigreit in the DECTE transcription
scheme, and the value at any given element isdggiéncy with which the speaker
uses the associated segment in his or her intervibe set of speaker vectors was
assembled into a matrix M in which the rowor i = 1..63) represent the speakers,
the columng (for j = 1..156) represent the phonetic segments, aneafbe at Mj;is
the number of times speakéruses segment M was normalized using mean
document length [18] to remove the effect of vamiain interview length.

3.2 Identification of Nonlinearity in M

Using graphical and regression-based methods rictlysbr even approximately
linear relationships between pairs of variableseafeund in M. In a few cases the
relationships looked random, but most showed eedidiole pattern; the segment pair
0. anda: is representative and is used as the basis fongt®on in what follows.

3.2.1 Graphical Identification of Nonlinearity
A scatter plot ob: on the horizontal axis and on the vertical in figure 16hows
a visually clear nonlinear relationship.
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Figure 10: Scatter plot of column values in M reering the phonetic segments

anda:

3.2.2 Regression-based Identification of Nonlinearity
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Using o: as the independent variable amdas the dependent, a selection of
polynomials was used to model the relationship.s€ree shown in figure 11.

100
*
80 ¢ + Fifth-degree
* polynomial
go L R2= 0.5574
Third-degree
polynomial
40+ rZ =04766
Second-degree
lynomial
20 polynomi
B =04741
1 First-degree
0 1 |polynomial
0 20 40 60 80 1[]UR2 = 03768

Figure 11: Polynomial regression models ofthka: relationship
Visually, the linear model appears to fit leasthaeid the 5-degree polynomial best,

as expected, and this is confirmed by runs tessgjwal plots, and the goodness of fit
statistics in table 1.

Table 1: Goodness of fit statistics for figure 11

SSE RM SE R?
Degree 1 1242( 15.0¢ 0.376¢
Degree 2 1048( 13.9¢ 0.474:
Degree 3 1039( 14.0( 0.478¢
Degree5 8821 13.1¢ 0.557¢

The extra sum-of-squares F-test and AIC test fursiupport the indications so far:
that the first-order model is worst, that secondeoris better than third, but that the
fifth-order model is preferred.

3.2.3 Graph Distance-based I dentification of Nonlinearity

The Euclidean 63 x 63 distance matrix E was caledldor M, the minimum
spanning tree for E was found, and the graph distamatrix G was derived by tree
traversal, all as described in the foregoing disicurs The rows of both E and G were
then linearized into vectors of length 63 x 63 $@9sorted, and co-plotted to get a
representation of the relationship between lineat graph distances in the two
matrices. This is shown in figure 12.
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Figure 12: Comparison of Euclidean and graph distaifior M

The graph distances between and among the spaakitsare consistently larger
than the Euclidean ones over the entire range. Ehisummarized in the ratio
mean(G) / mean(E)f mean distances, which is 3.89. On these inalisatM can be
said to contain a substantial amount of nonlingarit

Conclusion

This discussion set out to show how nonlinearity ba detected in data derived
from linguistic corpora using established graphaad regression-based methods and
proposing a method based on approximation of géodéstance measurement with
graph distance. These methods were applied to dreyudata abstracted from
phonetic transcriptions of speech from DECTE, dedtacorpus, and all the methods
agreed that substantial nonlinearity was prese®BCTE is typical of the many
digital electronic language corpora that have apguban recent years [19,20], and it
is reasonable to suspect that nonlinearity wilpkesent in data abstracted from these
as well. Where, therefore, measurement of distanoeng data objects is a factor in
analysis, as it is, for example, in cluster analysie data should first be screened for
nonlinearity and the selection of analytical metsbduld be guided by the result.
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