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Introduction 
 
The proliferation of computational technology has generated an 
explosive production of electronically encoded information of all 
kinds. In the face of this, traditional philological methods for search 
and interpretation of data have been overwhelmed by volume, and a 
variety of computational methods have been developed in an attempt 
to make the deluge tractable. These developments have clear 
implications for corpus-based linguistics in general, and for corpus-
based study of historical dialectology in particular: as  more and larger 
historical text corpora become available, effective analysis of them 
will increasingly be tractable only by adapting the interpretative 
methods developed by the statistical (Hair et al. 2005; Tabachnik & 
Fidell 2006), information retrieval (Belew 2000; Grossman & Frieder 
2004), pattern recognition (Bishop 2006), and related communities. 
To use such analytical methods effectively, however, issues that arise 
with respect to the abstraction of data from corpora have to be 
understood. This paper addresses an issue that has a fundamental 
bearing on the validity of analytical results based on such data: 
variation in document length. The discussion is in four main parts. 
The first part shows how a particular class of computational methods, 
exploratory multivariate analysis, can be used in historical 
dialectology research, the second explains why variation in document 
length can be a problem in such analysis, the third proposes document 
length normalization as a solution to that problem, and the fourth 
points out some difficulties associated with document length 
normalization 
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1. Exploratory multivariate analysis in historical 
dialectology 
 
 
Historical dialectology is based on the study of collections of spoken 
or written language. A typical research question is: given a corpus 
comprising a collection of historical documents, can those documents 
be dialectally classified on the basis of their linguistic characteristics -
-phonetic, phonological, morphological, lexical, or syntactic? There 
are two main approaches to this type of question: 
 

• Theoretically-driven: Classification criteria are selected by the 
researcher on the basis of an independently-specified 
theoretical linguistic framework supported by existing case 
studies conducted within that framework and by personal 
knowledge of the characteristics of the language in the 
historical period in question.  

 
• Empirically-driven: Classification criteria are algorithmically 

abstracted from the corpus data itself without reference to any 
theoretical linguistic framework, existing analytical results, or 
personal knowledge of the subject domain. 

 
The theoretically-driven approach is suitable where the corpus is 
embedded in a well understood dialectological context, while the 
empirically-driven one is suitable where little is known a priori about 
it. This paper is concerned with analysis of historical corpora whose 
characteristics are not well known using an empirically-driven 
methodology called exploratory multivariate analysis. 
 
 
1.1 The nature of exploratory multivariate analysis 
 
In current scientific practice, a hypothesis about some natural 
phenomenon is proposed and its adequacy assessed using data 
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obtained from observation of the domain of inquiry. But nature is 
dauntingly complex, and there is little practical or indeed theoretical 
hope of being able to observe even a small part of it exhaustively. 
Instead, the researcher selects particular aspects of the domain which 
seem salient to his or her research question. Each selected aspect is 
represented by a variable, and a series of observations is conducted in 
which, at each observation, the values of each variable are recorded. A 
body of data is thereby built up on the basis of which the hypothesis 
can be assessed. If only one aspect of the domain is observed --the 
height of individuals in a population, say-- then the data consists of 
some number of values assigned to a single variable; that data is 
univariate. If two aspects are observed --say height and weight-- then 
the data is bivariate, if three trivariate, and so on up to some arbitrary 
number n. Any data where n is greater than 1 is multivariate. 
 As the size of the data grows, that is, as the number of 
variables and / or the number of observations increases, it becomes 
ever more difficult to see any interesting regularities by direct 
inspection. Take, for example, data in which three persons p1, p2, and 
p3 are described in terms of two variables 'age' and 'weight'. If p1 is 
young, p2 middle-aged, and p3 old, and if p1's weight is low, p2's 
medium, and p3's high, it's easy enough to infer just by looking at the 
data that weight increases with age, at least for this sample. Adding a 
third variable 'height' makes it a little more difficult but not impossible 
to see such regularities. But what if there are a dozen variables, 
including such things as 'income', 'hair colour', and 'shoe size'? It is 
very difficult to see very much in the data, and, of course, there is no 
limit to the number of variables that might be used to describe people. 
How easy would it be to see any regularities in data with, say 100 
variables, even for only three people? And, as the number of persons 
increases, so does the difficulty of interpretation. In short, as the 
number of variables and/or observations grows, so does the difficulty 
of conceptualizing the interrelationships of variables on the one hand, 
and the interrelationships of observations on the other.  
 Exploratory multivariate analysis is a general term for 
mathematically based methods for discovering and understanding data 
that has too many variables for it to be comprehensible via direct 
inspection (Andrienko & Andrienko 2005). Exploratory methods have 
long been used in numerous science and engineering disciplines as a 
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way of generating hypotheses about data whose characteristics are not 
well understood. Closer to home, the proliferation of electronic text in 
recent decades has seen the application of exploratory methods in 
processing of natural language text in areas like information retrieval 
(Belew 2000; Grossman & Frieder 2004) and data mining (Tan et al. 
2006), as well as in linguistic analysis and in traditional philology 
more generally. The literature on linguistic and philological 
applications is too large and varied to cite here; representative 
dialectological examples are Heeringa & Nerbonne (2001), and 
Nerbonne & Herrings (2001). 
 
 
1.2. Application of exploratory multivariate analysis to historical 
dialectology  
 
Exploratory multivariate analysis methods are intended specifically to 
classify any given collection of objects described by more or less 
numerous variables. Because this is precisely the kind of research 
question with which historical dialectology is often concerned, their 
extension to corpus analysis is a natural step.  
 To exemplify this extension we consider the Newcastle 
Electronic Corpus of Tyneside English (NECTE), a corpus of dialect 
speech from Tyneside in North-East England (Allen et al. 2005). It 
includes phonetic transcriptions of 63 interviews together with social 
data about the speakers, and as such offers an opportunity to study the 
phonetic dialectology of Tyneside speech of the late 1960s. Moisl & 
Jones (2005), Moisl et al. (2006), Moisl & Maguire (2008) have 
begun that study using exploratory analysis of the transcriptions with 
the aim of generating hypotheses about phonetic variation among 
speakers and speaker groups in the corpus. These studies were based 
on comparison of profiles associated with each of the TLS speakers. 
A profile for any speaker S is the number of times S uses each of the 
phonetic segments in the NECTE transcription scheme in his or her 
interview. More specifically, the profile P associated with S is a 
vector having as many elements as there are segments such that each 
vector element Pj represents the j’th segment, where j is in the range 
1..number of segments in the NECTE phonetic transcription scheme, 
and the value stored at Pj is an integer representing the number of 
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times S uses the j’th  segment. There are 156 segments, and so a 
speaker profile is a length-156 vector. There are 63 TLS speakers, and 
their profiles are represented in a matrix N having 63 rows, one for 
each profile; a fragment is shown in Figure 1: 
 

 

Figure 1: NECTE phonetic segment frequency data matrix N 

The aim is to classify the 63 speakers in accordance with the values in 
their speaker profiles. 
 N is an example of a data that is simply too large and complex 
to be interpretable by direct inspection. It was therefore analyzed 
using hierarchical cluster analysis (Everitt et al. 2001), a widely 
used exploratory analytical method that represents relative similarity 
among items in high-dimensional data as a nested tree: 
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Figure 2: Cluster analysis of the NECTE data matrix N 

Cluster trees like this are familiar to linguists as representations of 
syntactic phrase structure, but differ from linguistic trees in that 
 
• they are shown horizontally rather in the vertical 

orientation that is more usual for linguistic phrase 
structure trees in order to make them more readily 
representable on a page. 

 
• the leaves are not lexical tokens but labels for the data 

items --here speaker labels. 
 
• they represent not grammatical constituency but 

relativities of similarity between the vectors 
representing the data entities --here speakers. The 
lengths of the branches linking the subtrees represent 
degrees of similarity: the shorter the branch, the more 
similar the subtrees. Thus the subtrees labelled NG1 
and NG2 above are very dissimilar, NG1a(i) and 
NG1a(ii) very similar, and so on. 

 
The hierarchical analysis partitions the NECTE speakers on the basis 
of their phonetic usage (Moisl et al., 2006). The main distinction is 
between middle class, well educated speakers from Newcastle on the 
north side of the river Tyne, labelled NG2, and working class, less 
well educated speakers from Gateshead on the south side of the Tyne, 
labelled NG1. The Gateshead speakers are categorized into NG1b 
(exclusively male), and NG1a (mainly through not exclusively 
female); NG1a is subcategorized into NG1a(i) (working class females) 
and NG1a(ii) (males and females with relatively higher 
socioeconomic status). 
 
 
  
2. The problem of variation in document length 
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It is a simple fact of life that documents in any given collection can 
vary considerably in length. Where the data abstracted from such a 
corpus is based on frequency, such length variation is a problem for 
cluster analysis. This section shows why. 
 For concreteness of exposition the discussion is based on a 
small, artificially-constructed corpus C with known structural 
characteristics. It comprises 9 excerpts from historical English texts 
from Old English to Early Modern English. These are arranged 
chronologically in Figure 3: 
 
Name Date Size 

Sermo Lupi ad Anglos 996 - 1023 AD 13 kb 

Beowulf c.1000 AD 106 kb 

Apollonius of Tyre c.1000-1050 35 kb 

The Owl and the Nightingale c.1250-1300 AD 10 kb 

Chaucer, Troilus & Criseyde c.1370 AD 123 kb 

Malory, Morte d'Arthur c.1470 AD 132 kb 

Everyman c.1500 AD 37 kb 

Spenser, Faerie Queene 1590 AD 34 kb 

King James Bible 1611 AD 11kb 

 
Figure 3: The contents of example corpus C 

 
 
2.1 Data creation 
 
Prior to its standardization in the later 18th century, spelling in the 
British Isles varied considerably from time to time and place to place, 
reflecting on the one hand differences in phonetics, phonology and 
morphology at different stages of linguistic development, and on the 
other differences in spelling conventions. It should, therefore, be 
possible to categorize texts on the basis of their spelling, and to 
correlate the resulting categorizations with chronology. This, 
therefore, is the research question: can the documents in C be 
accurately categorized chronologically solely on the basis of their 
spelling? 
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 How does one go about investigating spelling? The approach 
taken here is based on the concept of the tuple. A tuple is a sequence 
of symbols: AA is a pair, AAA a triple. AAA a four-tuple, and so on. 
This concept of tuple offers an efficient way of comparing spellings 
among texts: 
 

• Given a collection D containing m documents, compile a list 
of all letter tuples of that occur in the texts. Assume that there 
are n such tuples. 

 
• To each of the documents di in D (for i = 1..m) assign a vector 

of length n such that each vector element vj (for j = 1..n) 
represents one of the n letter tuples. 

 
• In each document di count the number of times each of the n 

letter tuples j occurs, and enter that frequency in the vector 
element vj of the vector associated with di.  

 
The result is a set of vectors each of which is an occurrence frequency 
profile of letter tuples for one of the documents in D. These document 
profile vectors can be stored as the rows of the data matrix. 
 A letter-pair frequency matrix was abstracted from C using 
the foregoing procedure. 554 letter pairs were found, and since there 
are 9 documents, the result is a 9 x 554 matrix henceforth referred to 
M. An example fragment is shown in Figure 4: 
 

  v1: ic v2: ch v3: we ... v554: qd 
Sermo Lupi 67 1 86 ... 0 
Beowulf 400 15 737 ... 0 
... ... ... ... ... ... 
King James Bible 18 18 21 ... 0 

 
Figure 4: Letter-pair frequency matrix M abstracted from C 

 
 
2.2 Hierarchical cluster analysis of M 
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From what is commonly known of the history of the English language 
and of spelling at various stages of its development, one expects 
cluster analysis of M to produce no surprises: the Old English, Middle 
English, and Early Modern English texts will form clusters. This 
expectation is not fulfilled, however, as is shown in Figure 5: 
 

 
 

Figure 5: Cluster tree of the rows of data matrix M 
 
The texts do not cluster by chronological period, and the clustering in 
fact makes no obvious sense in terms of anything one knows about 
them and their historical context. When, however, one looks at the 
'Size' column in Figure 3, the reason for the clustering immediately 
becomes clear. The texts have been clustered by their relative lengths: 
the short texts (Owl, Sermo, King James) comprise one cluster, the 
intermediate-length texts (Apollonius, Faerie Queene, Everyman) a 
second cluster, and the long texts (Troilus, Morte d'Arthur) a third, 
with Beowulf on its own commensurate with a length that falls 
between the intermediate-length and long texts. 
 
 
2.3 Explanation of document length based clustering 
 
Clustering based on document length is best explained in terms of 
vector space geometry, for which see any textbook on linear algebra 
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such as Fraleigh & Beauregard (1995). A vector space is a geometrical 
interpretation of a vector in which 
 
• the dimensionality n of the vector defines an n-dimensional space 

which, for present purposes, is taken to be the familiar Euclidean 
one in which the axes are straight lines at right angles to one 
another. 

 
• the sequence of numbers comprising the vector specifies 

coordinates in the space.  
 
• the vector itself is a point at the specified coordinates in the space. 
 
For example, the two components of a vector v = (30 70) in Figure 6 
are coordinates of a point in a two-dimensional space, and those of v = 
(40 20 60) of a point in three-dimensional space: 
 

  
 

Figure 6: Vectors in two and three dimensional vector spaces 
 
A length-4 vector defines a point in 4-dimensional space, and so on to 
any dimensionality n. Mathematically there is no problem with spaces 
of dimension greater than 3. The only problem lies in the possibility of 
visualization and intuitive understanding: as the number of variables 
and thus dimensions grows beyond 3, graphical representation and 
intuitive comprehension of it become impossible. The two and three 
dimensional cases provide a very useful intuitive analogy for higher-
dimensional ones, though. 
 More than one vector can exist in a vector space. Where n = 2, 
for example, a set of vectors in the two-dimensional space might look 
like Figure 7: 
 



 11 

 v1 v2 
1 0.8147 0.9058 
2 0.1270 0.9134 
3 0.6324 0.0975 
4 0.2785 0.5469 
5 0.9575 0.9649 
6 0.1576 0.9706 
7 0.9572 0.4854 
8 0.8003 0.1419 
9 0.4218 0.9157 
10 0.7922 0.9595  

 
 

Figure 7: Multiple vectors in two dimensional vector space 
 
Two concepts associated with vectors in a space are relevant here: 
 

• The length of a vector is the length of a line drawn from the 
axis origin to the vector's coordinates in the space --for 
example L1 in Figure 7. Where two or more vectors exist in a 
space it is possible to compare their lengths: in Figure 7, L1 is 
greater than L2. 

 
• Where two vectors exist in a space it is possible to measure 

the distance between them, and when there are more than two 
their relative distances can be compared; in figure 7 D1, for 
example, is greater than D2.  

 
Exploratory analytical methods use relativities of vector distance to 
identify clusters: vectors whose values are relatively similar have 
similar coordinates in space and are thus relatively close together in 
the space, whereas vectors whose values are relatively dissimilar are 
relatively far apart in space. Figure 8 shows a two-dimensional data 
matrix, the corresponding vectors in two-dimensional space, and a 
hierarchical analysis showing the cluster structure. 
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 v1 v2 

1 27 46 

2 29 48 

3 30 50 

4 32 51 

5 34 54 

6 55 9 

7 56 9 

8 60 10 

9 63 11 

10 64 11 

11 78 72 

12 79 74 

13 80 70 

14 84 73 

15 85 69 

16 27 55 

17 29 56 

18 30 54 

19 33 51 

20 34 56 

21 55 13 

22 56 15 

23 60 13 

24 63 12 

25 64 10 

26 84 72 

27 85 74 

28 77 70 

29 76 73 

30 76 69  

 
 
 

 

 
Figure 8: Data matrix with scatter plot of row vectors in two-dimensional space and 
corresponding cluster tree showing distance relativities of row vectors in the space 
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Now observe what happens to the distribution of the row vectors in 
the space and the corresponding cluster tree when a proper subset of 
them is lengthened. A vector is lengthened by increasing the 
magnitude of the numbers that comprise it. The numerical values of 
all the vectors belonging to cluster B in Figure 8 were multiplied by 
10; note that this is a random selection both of vectors and of 
multiplier, and the discussion to follow would have been the same 
with a different selection. The resulting matrix, together with the 
corresponding scatter plot and cluster tree, are shown in Figure 9: 

 

 v1 v 2 
1 27 46 
2 29 48 
3 30 50 
4 32 51 
5 34 54 
6 550 90 
7 560 90 
8 600 100 
9 630 110 
10 640 110 
11 78 72 
12 79 74 
13 80 70 
14 84 73 
15 85 69 
16 27 55 
17 29 56 
18 30 54 
19 32 51 
20 34 56 
21 550 130 
22 560 150 
23 600 130 
24 630 120 
25 640 100 
26 84 72 
27 85 74 
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28 77 70 
29 76 73 
30 76 69  

 
 
Figure 9: Modified matrix from Figure 8 with corresponding scatter plot and cluster 

tree 
 
Lengthening the row vectors of cluster B in Figure 8 has moved them 
far from A and C and brought A and C relatively much closer 
together. The consequence for clustering is shown in the 
corresponding tree, which now differs fundamentally from the one in 
Figure 8: A and C now form a composite cluster, and B is far from 
AC. In this case, therefore, it is clear that relative vector length is an 
important determinant of clustering, and, more specifically, that 
vectors of similar lengths cluster --long with long and short with short. 
The general case is not quite so simple, since the angles between and 
among vectors and not just their relative lengths also need to be taken 
into account (Fraleigh & Beauregard 1995), and it is more accurate to 
say that, in general, vectors of similar lengths tend to cluster. 
 How does all this apply to length-based clustering of varying-
length document collections? When, as here, the data abstracted from 
a collection is a frequency matrix based on counting all occurrences of 
a set of features in each text, the sum of magnitudes of the frequencies 
in the vector representing a long document will be greater than the 
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sum of magnitudes of frequencies in the vector representing a short 
one --or, on other words, vectors representing long documents are 
longer than vectors representing short documents in a way that is 
proportional to the difference in document lengths. This is shown in 
Figure 10, where row vector lengths in M are plotted against the 
lengths of the corresponding documents in C, and where vector length 
grows near-linearly with document length: 
 

 
Figure 10: Plot of row vector lengths in M against the lengths of the corresponding 

documents in C 
 
Comparison of Figure 10 with the cluster tree in Figure 5, moreover, 
shows an isomorphism between the vector length relations in Figure 
10 and the document clustering in Figure 5: the documents have been 
clustered by relative vector length. 
 
 

3. Solutions 
 
There is an obvious solution to the problem of variation in document 
length: truncate all the documents to the length of the shortest, thereby 
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making them all equal in length. There are, however, two problems 
with this approach. On the one hand, where the variation is large and 
the shortest documents are very short, it entails throwing away a good 
deal of potentially useful information. And, on the other, there is no 
obvious basis for choosing what material to retain from the longer 
texts and what to discard. For these reasons, alternatives to truncation 
have been developed. 
 The literature contains a variety of ways of mitigating or 
eliminating the effect of variation in document length on data matrix 
row vector clustering (Buckley 1993; Singhal et al. 1996a, 1996b). 
We will consider the one that is probably the intuitively most 
accessible: normalization by mean document length. This 
normalization adjusts the lengths of each row vector of an m x n 
frequency matrix, here M, in relation to the mean length of documents 
in the collection: 
 

 
where: 

• M’ i is the normalized i 'th row vector of the matrix M, for i = 
1..the number of rows m in M. 

• M i is the unnormalized i 'th row vector of the matrix M 
• µ is the mean number of letter pairs across the m documents 
• length(i) is the number of letter pairs in any given document i 

 
The value in each document vector Mi is multiplied by the ratio of the 
mean number of letter pairs across all the documents in the collection 
to the number of pairs in document i. The effect is to decrease the 
values in the vectors that represent long documents, increase them in 
vectors that represent short ones, and, for documents that are near or at 
the mean, to change the corresponding vectors little or not at all. 
Conceptually, therefore, this normalization constitutes a conjecture 
about what the row vectors in a data matrix would have been like if 
the corresponding documents had all been the same length. 
 Cluster analysis of the normalized matrix M' is shown in 
Figure 11: 
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Figure 11: Cluster tree of the rows of length-normalized matrix M' 
 
The row vectors are now clustered by the chronological periods of the 
texts they represent, and make sense in terms of what is known of 
those texts in relation to the history of English. There are two main 
clusters. The upper one subclusters into a group of Old English texts 
and the single Early Middle English text irrespective of length 
variation. The lower one contains the later Middle English and the 
Early Modern English texts. Here, the most recent of the Early 
Modern texts, King James, is on its own; the Faerie Queene, though 
chonologically near to King James, is known deliberately to have 
archaized its spelling, and is thus classified with the Middle English 
texts. Document length normalization has, therefore, solved the 
problem of clustering by document length in this instance. The 
NECTE data matrix discussed in Section 1 above was, moreover, 
normalized prior to cluster analysis, and the tree shown in Figure 2 is 
based on the normalized matrix. 
 
 
 
4. Discussion 
 
Document length normalization is not as straightforward as the 
foregoing discussion suggests, for two main reasons. 
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 Firstly, the normalization procedure used in Section 3 solved 
the problem of variation in document length in the sense that, for the 
small example corpus C, it supported a cluster analysis that gave the 
expected answer, and, for NECTE, supported an analysis that is 
sociolinguistically plausible. But how does its performance compare 
to the other available normalization methods, both with respect to 
these and to more general applications? Selection of an appropriate 
method must be based on an evaluation of their relative effectiveness; 
the plan is to undertake such an evaluation as part of future research 
on document length normalization. 
 Secondly, frequency matrices based on collections of varying-
length documents can have characteristics that compromise the 
effectiveness of existing normalization procedures. One of these is 
nonlinearity in the growth of variable frequency with increasing text 
length, and another is unreliable population probability estimation for 
variables in very short documents. An adequate account of the former 
would excessively prolong the discussion and is therefore not 
attempted here, but see Moisl (2007) for an indication of what is 
involved. A brief account of the latter follows. 
 Given a population E of n events, the frequency interpretation 
of probability (Milton & Arnold 2003:1-17) says that the probability 
p(ei) of ei ε E (for i in 1..n) is the ratio (frequency (ei) / n), that is, the 
proportion of the number of times ei occurs relative to the total 
number of occurrences of events in E. For example, if a document 
contains 100,000 letters and the letter g occurs 320 times, then the 
probability p(g) = 320 / 100000. A sample of E can be used to 
estimate p(ei), as is done with, for example, human populations in 
social surveys. The Law of Large Numbers (Grinstead & Snell 1997: 
305-320) says that, as sample size increases, so does the likelihood 
that the sample estimate of an event's population probability is 
accurate; a small sample might give an accurate estimate but is less 
likely to do so than a larger one, and for this reason larger samples are 
preferred. 
 With specific reference to document corpora, it was pointed 
out earlier that, where the data abstracted from a multi-document 
corpus is a frequency matrix based on counting all occurrences of a set 
of features in each document, the sum of magnitudes of the 
frequencies in a vector representing a relatively longer document is 
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greater than the sum for the vector representing a relatively shorter 
one. The longer the document, therefore, the more accurate its 
estimation of the population probabilities of the selected textual 
features can be expected to be. To exemplify this, a randomly selected 
document --Dickens' Domby & Son-- was partitioned into a corpus D 
of 100 increasing-length segments: the first segment contains the first 
1000 words of the novel, the second segment the first 2000 words, and 
so on, adding the next 1000 words to segment i to create segment i + 
1. A matrix Q of letter-pair frequencies was abstracted from D as in 
Section 2.1 above. For convenience of exposition, the matrix rows 
were arranged in ascending order of row vector length so that the one 
representing the shortest segment was at Q1 and the longest at Q100, 
and the columns so that the highest-frequency variable was 
represented by the leftmost column and the lowest frequency variable 
in the rightmost one. The probabilities for each of the letter-pair 
columns of Q were then calculated to find out the relationship 
between segment length and accuracy of population probability 
estimation for each pair across the entire 100-segment collection. The 
probability distributions for the three most frequent pairs he, th, and in 
are shown in Figure 12; the distributions for the remaining columns 
are similar. 
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Figure 12: Probability estimates of the letter pairs he, th, and in, where the horizontal 
axis represents segments of increasing length and the vertical axis probability. 

 
The horizontal axis represents the 100 segments and the vertical axis 
the probability estimates for he, th, and in. In each distribution, the 
probabilities fluctuate for the shorter segments on the left and then 
settle down to a fairly constant value representing the increasingly-
accurate estimate of the population probability as one moves to the 
longer segments on the right, which is what one expects from the Law 
of Large Numbers. The fluctuations on the left are caused by 
frequency values that are too large or too small relative to the length 
of the segment to estimate the population probability accurately. In 
other words, frequency values for variables in short texts can be and in 
the present instance are unreliable estimators of population 
probabilities. 
 This unreliability can render document length normalization 
unreliable as well. To show how, Q was normalized using the same 
procedure as in Section 3, and the effect on the values in the he 
column is shown in Figure 13. 
 

 
 
Figure 13: Normalized values for the latter pair he, where the x-axis represents texts 

of increasing length and the y-axis the normalized values. 
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Figure 13 shows a normalized frequency distribution curve 
isomorphic with the probability curve in Figure 12: for the shorter 
segments, the normalized values fluctuate between about 5100 and 
5900 before settling down to a value around 5600. This degree of 
variation can be expected to affect assignment of the shorter segments 
to clusters in cluster analysis. The suspicion, moreover, is that Q is not 
unique in this respect, and that the effect just described will occur for 
matrices derived from other document collections --that, in short, this 
is a general problem in document length normalization. How 
widespread it is, and how important its effect on exploratory analysis, 
is a matter for further research. And, if it is both widespread and 
important, so is what to do about it. 
  
 
5. Conclusion 
 
To use exploratory multivariate methods effectively in the analysis of 
document collections, issues that arise with respect to the abstraction 
of data from such collections have to be understood. This paper 
addressed an issue that has a fundamental bearing on the validity of 
analytical results based on such data: variation in the lengths of the 
documents in the collection of interest. The discussion was in four 
main parts. The first part showed how a particular class of 
computational methods, exploratory multivariate analysis, can be used 
in historical dialectology research, the second explained why variation 
in document length can be a problem in such analysis, the third 
presented a solution --normalization of document length relative to the 
mean length of documents in the collection-- and the fourth pointed 
out some difficulties that arise in relation to document length 
normalization. The conclusion is that failure to normalize for variation 
in document length can generate fundamentally erroneous cluster  
analytical results, but that normalization itself has some unresolved 
problems. 
 
 
 
5. References 



 22 

 
Allen W. / Beal J. / Corrigan K. / Maguire W. / Moisl, H. 2006. A 

linguistic "time capsule": the Newcastle Electronic Corpus of 
Tyneside English. In Allen W. / Beal J. / Corrigan K. / Maguire 
W. / Moisl, (eds) Creating and Digitizing Language Corpora, 
Volume 2: Diachronic Databases. Basingstoke, UK: Palgrave 
Macmillan, 16-48. 

Andrienko, N. / Andrienko, G. 2005. Exploratory Analysis of Spatial 
and Temporal Data: A Systematic Approach. Heidelberg: 
Springer.  

Belew, R. 2000. Finding out about: A cognitive perspective in search 
engine technology and the WWW. Cambridge: Cambridge 
University Press. 

Bishop, C. 2006 Pattern Recognition and Machine Learning. New 
York: Springer. 

Buckley, C. 1993. The importance of proper weighting methods. In 
Bates, M. (ed.) Human Language Technology. San Mateo, CA: 
Morgan Kaufmann.  

Everitt, B. / Landau, S. / Leese, M. 2001. Cluster Analysis, 4th ed. 
London: Arnold.  

Fraleigh, J. / Beauregard, R. 1995. Linear Algebra. 2nd ed. Menlo 
Park, CA: Addison-Wesley. 

Grinstead, C. / Snell, J. 1997. Introduction to Probability, 2nd ed. 
American Mathematical Society. 

Grossman, D. / Frieder, O. 2004. Information Retrieval. 2nd ed. 
Dordrecht: Springer. 

Hair, J. / Black, W. / Babin, B. / Anderson, R. / Tatham, R. 2005. 
Multivariate Data Analysis. 6th ed. New Jersey: Prentice-Hall. 

Heeringa, W. / Nerbonne, J. 2001. Dialect areas and dialect 
continua. Language Variation and Change 13, 375-400.  

Milton, J. / Arnold, J. 2003. Introduction to Probability and 
Statistics, 4th ed. Boston:McGraw-Hill. 

Moisl, H. / Jones V. 2005. Cluster analysis of the Newcastle 
Electronic Corpus of Tyneside English: a comparison of methods. 
Literary and Linguistic Computing 20, 125-46.  

Moisl, H. / Maguire W. / Allen W. 2006. Phonetic variation in 
Tyneside: exploratory multivariate analysis of the Newcastle 



 23 

Electronic Corpus of Tyneside English. In Hinskens, F. (ed.) 
Language Variation. European Perspectives. Amsterdam: John 
Benjamins, 127-141.  

Moisl, H. 2007. Data nonlinearity in exploratory multivariate analysis 
of language corpora,. In Nerbonne, J. / Ellison, M. / Kondrak, G. 
(eds) Computing and Historical Phonology. Proceedings of the 
Ninth Meeting of the ACL Special Interest Group in 
Computational Morphology and Phonology, June 28 2007, 
Association for Computational Linguistics, 93-100. 

Moisl, H. / Maguire, W. 2008. Identifying the Main Determinants of 
Phonetic Variation in the Newcastle Electronic Corpus of 
Tyneside English. Journal of Quantitative Linguistics 15, in press.  

Nerbonne J. / Heeringa W. 2001. Computational comparison and 
classification of dialects. Dialectologia et Geolinguistica 9, 69-83. 

Singhal, A. / Salton, G. / Mitra, M. / Buckley, C. 1996a. Document 
Length Normalization. Information Processing and Management 
32, 619-633. 

Singhal, A. /  Buckley, C. / Mitra, M. 1996b. Pivoted document length 
normalization. Proceedings of the 19th ACM Conference on 
Research and Development in Information Retrieval (SIGIR-96), 
21-29. 

Tabachnik, B. / Fidell, L. 2006. Using Multivariate Statistics, 5th ed.. 
Boston: Allyn & Bacon. 

Tan, P. / Steinbach, M. / Kumar, V. 2006. Introduction to Data 
Mining. Boston: Pearson Addison Wesley. 

 


