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Introduction 

 The proliferation of computational technology has generated an 

explosive production of electronically encoded information of all kinds. In 

the face of this, traditional philological methods for search and 

interpretation of data have been overwhelmed by volume, and  

computational methods have been developed in an attempt to make the 

deluge tractable. These developments have clear implications for corpus-

based linguistics in general, and for corpus-based study of language 

variation in particular. As  more and larger electronic corpora become 

available, effective analysis of them will increasingly be tractable only by 

adapting the interpretative methods developed by the statistical, information 

retrieval, pattern recognition, and related communities. To use such 

analytical methods effectively, however, issues that arise with respect to the 

abstraction of data from corpora have to be understood.  

 This paper addresses an issue that has a fundamental bearing on the 

validity of analytical results based on such data: sparsity. The discussion is 

in three main parts. The first part shows how a particular class of 

computational methods, exploratory multivariate analysis, can be used in 

language variation research, the second explains why data sparsity can be a 

problem in such analysis, and the third outlines some solutions. 



 

1. Exploratory multivariate analysis in the study of language variation  

 A typical research question in the study of language variation is: 

given a corpus comprising a collection of documents each of which 

represents the linguistic characteristics of a single speaker --phonetic, 

phonological, morphological, lexical, or syntactic-- can the documents and 

thus the speakers be classified on the basis of those characteristics? This 

kind of question can be answered using an empirical methodology known as 

exploratory multivariate analysis (Andrienko & Andrieko 2005). 

 

1.1 The nature of exploratory multivariate analysis 

 In describing a domain of interest, the researcher selects particular 

aspects of the domain which seem salient to the research question, and each 

selected aspect is represented by a variable. If only one aspect of the domain 

is observed the data is said to be univariate, if two aspects are observed the 

data is bivariate, if three trivariate, and so on up to some number n. Any 

data where n is greater than 1 is multivariate.  

 The larger the number of variables, the more difficult data is to 

interpret. Take, for example, data in which 100 people are described in 

terms of a single variable ‘age’. Visual inspection would suffice to classify 

the people on that variable. If these people are described by two variables 

‘age’ and ‘height’, classification becomes more difficult, but visual 

inspection is probably still sufficient. If, however, they are described by, 

say, 50 variables (‘income’, ‘eye colour’, etc), classification by visual 



inspection becomes intractable for most people. In general, as the number of 

variables grows, so does the difficulty of conceptualizing the 

interrelationships of variables on the one hand, and the interrelationships of 

objects –here people– described by those variables on the other. Exploratory 

multivariate analysis is a general term for mathematically-based methods for 

understanding data when it has too many variables for it to be 

comprehensible via direct inspection.  

 

1.2 Application to historical dialectology  

 Exploratory multivariate analysis methods are intended to classify 

any given set of objects described by more or less numerous variables. 

Because this is the kind of research question with which language variation 

research is often concerned, their extension to corpus analysis is a natural 

step. To exemplify this extension, we consider the Newcastle Electronic 

Corpus of Tyneside English (NECTE), a corpus of dialect speech from 

North-East England (Allen et al. 2006). It includes phonetic transcriptions 

of 63 interviews together with social data about the speakers, and as such 

offers an opportunity to study the phonetic dialectology of Tyneside speech 

of the late 1960s. We have begun that study using exploratory analysis of 

the transcriptions with the aim of generating hypotheses about phonetic 

variation among speakers and speaker groups (Moisl et al. 2006). These 

studies were based on comparison of phonetic profiles associated with each 

of the NECTE speakers, where a profile is the number of times a given 

speaker uses each of the phonetic segments in the NECTE transcription 



scheme. There are 156 segments, so a speaker profile is described by 156 

variables. The 63 speaker profiles are represented as a  63 x 156 matrix N, a 

fragment of which is shown in Figure 1. The aim is to classify the speakers 

in accordance with the frequency values in their profiles. 

 

Figure 1: NECTE phonetic segment frequency data matrix N 

 N is an example of data that is simply too large and complex to be 

interpretable by direct inspection. It was therefore analyzed using 

hierarchical cluster analysis (Everitt et al. 2001), a widely used exploratory 

method that represents relative similarity among data items as a nested tree.  

 

Figure 2: Cluster analysis of the NECTE data matrix N 



The hierarchical analysis of N in Figure 2 partitions the NECTE speakers 

into groups on the basis of their phonetic usage. The main distinction is 

between middle class speakers from Newcastle on the north side of the river 

Tyne (NG2) and working class speakers from Gateshead on the south 

(NG1). The Gateshead speakers are further categorized into NG1b 

(exclusively male) and NG1b (mainly through not exclusively female). and 

NG1a is subcategorized into NG1a(i) (working class females) and NG1a(ii) 

(males and females with relatively higher socioeconomic status). 

 

2. The problem of data sparsity 

 Sparsity is a major issue in data analysis generally (Verleysen 2003; 

Verleysen et al. 2003). Why this is so is best explained in terms of a widely 

used way of representing data: vector space representation. A vector is a 

sequence of numbers indexed by the positive integers 1, 2, 3...n. 

 

Figure 3: A vector 

A vector space is a geometrical interpretation of a vector in which the 

dimensionality n of the vector defines an n-dimensional space, the sequence 

of numerical values comprising the vector specifies coordinates in the space, 

and the vector itself is a point at the specified coordinates. For example, the 

two components of a vector v = (30 70) in Figure 4 are coordinates of a 

point in a two-dimensional space, and those of v = (40 20 60) of a point in 

three-dimensional space: 



 

Figure 4: Vectors in 2- and 3-dimensional space 

A length-4 vector defines a point in 4-dimensional space, and so on to any 

dimensionality n.  

 Given a data matrix in which the rows are the data items and the 

columns the variables, that matrix defines a manifold in n-dimensional 

space. The concept 'manifold' comes from mathematical topology (Munkres 

2000); for present purposes it can be understood as the shape of data in 

space. What is the 'shape' of data? Assume a data matrix with 1000 3-

dimensional vectors. If these vectors are plotted in 3-dimensional space, 

they form a cloud of points. Depending on the nature of the 

interrelationships of the objects that the vectors describe, that cloud might 

be completely random, or might have some nonrandom structure (ie, Figure 

5). 

 

Figure 5: A manifold in 3-dimensional space 

The shape defined by the vector cloud is a manifold, and the idea extends 

directly to any dimensionality. For the purposes of this discussion, therefore, 

a manifold is a set of vectors in n-dimensional space. 



 To discern the shape of a manifold, there must be enough data points 

to give it adequate definition. If, as in the Figure 6a, there are just two 

points, the only reasonable manifold to propose is a line. 

 

Figure 6: Manifolds in 3-dimensional space 

Where there are 3 points, a plane as in Figure 6b is reasonable. But it is only 

as the number of data points grows that the true shape of the manifold 

emerges, as in Figure 6c. The general rule, therefore, is: the more data the 

better for manifold definition.  

 Getting enough data can be, and with high-dimensional multivariate 

data usually is, difficult or even intractable (Bishop 2006:33-8; Verleysen 

2003; Verleysen et al. 2003). The problem is that the space in which the 

manifold is embedded grows very quickly with dimensionality and, to retain 

a reasonable degree of manifold definition, more and more data is required 

until, equally quickly, getting enough becomes impossible. 

 Assume an application in which the frequency of each variable is 

determined for each data item, and that, for simplicity, frequency is always 

in the range 0..9. Where there are 2 variables, the number of possible 2-

dimensional vectors such as (0,9), (3,4), and so on is 10 x 10 = 100. This is 

the data space. Where there are 3 variables, the number of possible 3-

dimensional vectors (0,9,2), (3,4,7) and so on is 10 x 10 x 10 = 1000. For 4 

variables the data space is 10 x 10 x 10 x 10 = 10000. In general, the size of 



a data space is rd , where r is the measurement range of the variables (here 

0..9) and d the dimensionality. The rd function generates an extremely rapid 

increase of data space size with dimensionality: even the modest d = 8 

allows for 100,000,000 possible vectors. This is a problem because, the 

larger the data dimensionality, the more difficult it becomes to define the 

manifold sufficiently well to achieve reliable analytical results.  

 To see why, assume that we want to analyze, say, 24 speakers in 

terms of their frequency of usage of two phonetic segments; these segments 

are rare, so a range of 0..9 is sufficient. The ratio of actual to possible 

vectors in the space is 24/100 = 0.24, or, put another way, the vectors 

occupy 24% of the data space. If we now want to analyze those 24 speakers 

in terms of their usage of three phonetic segments, the ratio of actual to 

possible vectors is 24/1000 = 0.024 or 2.4 % of the data space. In the eight-

dimensional case, it is 24/100000000 = 0.00000024 %. A fixed number of 

vectors occupies proportionately less and less of the data space with 

increasing dimensionality. In other words, the data space becomes so 

sparsely inhabited by vectors that the shape of the manifold cannot, in 

general, be reliably determined.  

 What about using more data, as proposed earlier? Let's say that 24% 

occupancy of the data space is judged to be adequate for manifold 

resolution. To achieve that for the above 3-dimensional case one would 

need 240 vectors, for the 4-dimensional case 2400, and for the 8-

dimensional one 24,000,000. This may or may not be possible for any given 

corpus. And what are the prospects for dimensionalities higher than 8? 



 

3. Solutions 

 Given that provision of additional data to improve the definition of 

sparse manifolds is not always a tractable prospect, the remaining 

alternatives are:  (i) to use sparse manifolds for exploratory analysis and to 

live with the consequent unreliability, or (ii) to attempt to reduce the 

sparsity. The remainder of the discussion addresses (ii). 

 Various methods have been developed to reduce sparsity, such as 

tf/idf (Robertson 2004), Poisson distribution (Church & Gale 1995), and 

principal component analysis (Jolliffe 2002). We look at a method that is 

conceptually simpler than any of these: elimination of relatively low-

variance variables.  

 Classification of documents depends on there being variation in the 

characteristics of interest to the research question --if there is no variation, 

the documents are identical and cannot be classified relative to one another. 

Variables describing the characteristics of interest are thus only useful for 

classification if there is significant variation in the values they take. In any 

classification exercize, therefore, variables with little or no variation can be 

disregarded. 

 Mathematically, the degree of variation in the values of a variable is 

described by its variance, that is, by the average deviation of the variable 

values from their mean. Given, on the one hand, a matrix Q in which the 

rows are the data objects and the columns are variables describing those 

objects, and on the other that the aim is to classify the objects on the basis of 



the differences among them, then the application of variance to 

dimensionality reduction is straightforward: eliminate from Q all columns 

with low variance. The 63 x 156 NECTE matrix N is very sparse, since 

there are only 63 vectors in a 156-dimensional space, but many of the 156 

variables are superfluous and can be eliminated, greatly reducing 

dimensionality and thus sparsity. The variance for each of the columns of N 

was calculated, sorted by decreasing magnitude, and plotted; the result is 

shown in figure 7: 

 

Figure 7: Sorted column variances of the NECTE data matrix N 

The variables to the right of –generously—the 80th have such low variance 

that they can be eliminated from consideration. They were, therefore, 

removed from N, resulting in a reduced-dimensionality 63 x 80 matrix. The 

analysis of this reduced matrix gave the cluster tree shown in Figure 2. 

 

Conclusion 

 The discussion began by observing that (i) as more and larger 

electronic corpora become available for the study of language variation, 

effective analysis of them will increasingly be tractable only by using 



mathematically and statistically based interpretative methods, and (ii) to use 

such methods effectively, issues that arise with respect to the abstraction of 

data from corpora have to be understood. Data sparsity is such an issue. The 

discussion was in three main parts. The first part showed how a particular 

class of computational methods, exploratory multivariate analysis, can be 

used in language variation research, the second explained why data sparsity 

can be a problem in such analysis, and the third outlined some solutions. 

The conclusion is that exploratory analysis of any linguistic corpus in which 

the data is high-dimensional must reduce the data matrix dimensionality as 

much as possible consistent with the need to describe the corpus adequately. 
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