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1. Introduction 

Corpus linguistics is a methodology for creating collections of natural language speech and 
text, abstracting data from them, and analysing that data with the aim of generating or 
testing hypotheses about the structure of language and its use in the world [Kennedy 1998, 
McEnery & Wilson 2001, Baker 2009]. On this definition, corpus linguistics began in the late 
eighteenth century with the postulation of an Indo-European protolanguage and its 
reconstruction based on examination of numerous living languages and of historical texts 
[Clackson 2007]. Since then it has been applied to research across the range of linguistics 
subdisciplines and, in recent years, has become an academic discipline with its own 
research community and scientific apparatus of professional organizations, websites, 
conferences, journals, and textbooks.

Throughout the nineteenth and much of the twentieth centuries corpus linguistics was 
exclusively paper-based. The collections at the root of the discipline were in the form of 
hand-written or printed documents, and research using such collections involved reading 
through the documents, often repeatedly, creating data by noting features of interest on 
some paper medium such as index cards, inspecting the data directly, and on the basis of 
that inspection drawing conclusions that were published in printed books or journals. The 
advent of digital electronic technology in the second half of the twentieth century and its 
evolution since then have increasingly rendered this traditional methodology obsolete. On 
the one hand, the possibility of representing language electronically rather than as visual 
marks on paper, together with the development of electronic media, infrastructure, and 
computational tools for creation, emendation, storage, and transmission of electronic text 
have led to a rapid increase in the number and size of corpora available to the linguist 
[Church & Mercer 1993], and these are now at or beyond the limit of what an individual 
researcher can efficiently use in the traditional way. On the other, data abstracted from very 
large corpora can itself be so extensive and complex as to be impenetrable to understanding
by direct inspection. Digital electronic technology has been a boon the corpus linguistics, but
in linguistics, as in life, it's possible to have too much of a good thing.

One response to digital electronic text and data overload is to use only corpora of tractable 
size or, equivalently, subsets of large corpora, but simply ignoring available information is not
scientifically respectable. The alternative is to look to related research disciplines for help. 
The overload in corpus linguistics is symptomatic of a more general trend. Daily use of digital
electronic information technology by many millions of people worldwide in their professional 
and personal lives has generated and continues to generate truly vast amounts of electronic 
speech and text, and abstraction of information from all but a tiny part of it by direct 
inspection is an intractable task not only for individuals but also in government and 
commerce -- what, for example, are the prospects for finding a specific item of information by
reading sequentially through the huge number of documents currently available on the World
Wide Web? In response, research disciplines devoted to information abstraction from very 
large collections of electronic text have come into being. These go under a variety of names 
such as informatics, information science, information retrieval [Manning et al. 2008], text 
summarization, data mining [Hand et al. 2001], natural language processing [Manning & 
Schütze 1999, Dale et al. 2000, Jurafsky & Martin 2008, Cole et al.2010, Indurkhya & 
Damerau 2010], and quantitative linguistics. They overlap to greater or lesser degrees but 
share an essentially identical remit: to make interpretation of large collections of digital text 
tractable. To achieve this they draw on concepts and methods from a range of other 



disciplines including mathematics, statistics, computer science, and artificial intelligence. An 
increasingly important class of these concepts and methods is cluster analysis, which is 
used across a broad range of sciences for hypothesis generation based on identification of 
structure in data which is too large or complex, or both, for it to be interpretable by direct 
inspection. The aim of the present discussion is to show how cluster analysis can be used 
for corpus-based hypothesis generation in linguistics by applying it to a case study of a 
dialect corpus, the Diachronic Electronic Corpus of Tyneside English, and thereby to 
contribute to the development of an empirically-based quantitative methodology for 
hypothesis generation in the corpus linguistics community. 

This aim is realized by presenting the relevant material so as to make it accessible to the 
target community. This implies that accessibility is a problem, and in the author's view it is, 
for several reasons.

 The number of available clustering methods is so large that even specifically 
dedicated surveys of them are selective [for example Jain et al 1999], more are 
continually being proposed, and the associated technical literature is correspondingly
extensive and growing. Selection of the method or methods appropriate to any given 
research application requires engagement with this literature, and for the non-
specialist the magnitude of the task can be a substantial obstacle to informed use of 
cluster analysis. The present discussion addresses this obstacle by selectivity. There 
is no prospect of being able to cover all or even very many of the available clustering 
methods at a level of description sufficient to convey understanding, and as such no 
attempt is made at comprehensiveness; surveys exist already, and no obvious 
purpose would be served by a précis of them here. What is offered instead are 
detailed descriptions of a relatively small selection of methods which are likely to be 
of most use to corpus linguists, where usefulness is judged on criteria of intuitive 
accessibility, theoretically and empirically demonstrated effectiveness, and availability
of software implementations for practical application. These detailed descriptions are 
supplemented by references to variations on and alternatives to the methods in 
question, thereby providing the reader with pointers to the broader range of methods 
in which the selected ones are embedded. Needless to say, there is a subjective 
element in this, and a different writer might well have made different choices.

 Understanding of the nature, creation, representation, and properties of data is 
fundamental to successful cluster analysis. The clustering literature typically 
assumes familiarity with these topics, however, and consequently tends to deal with 
them in relatively cursory fashion; anyone lacking the requisite familiarity must 
acquire it by engaging with the relevant and also very extensive mathematical, 
statistical, and data processing literatures. To forestall the need for this, the account 
of the selected cluster analytical methods in what follows is preceded by a detailed 
discussion of data issues. 

 Cluster analysis and data processing are based on concepts from mathematics, 
statistics, and computer science, and discussions of them in the above-mentioned 
literatures are, in general, quite technical. This can be a serious obstacle: although it 
has become less pronounced, the arts / science divide is still with us, and many 
professional linguists have little or no background in and sometimes even an 
antipathy to mathematics and statistics; for futher discussion of this assertion see 



Chapter 4 below. Understanding of these concepts and associated formalisms is, 
however, a prerequisite for informed application of cluster analysis, and so 
introductory-level explanations of them are provided. No a priori knowledge of them 
is assumed, and all are explained before any use is made of them. They are, 
moreover, introduced in the course of discussion as they are needed, so that the 
necessary knowledge is built up gradually. 

This approach itself presents a problem. Some linguists are as mathematically sophisticated 
as any in the traditional 'hard' sciences, and to such readers intuitive explanations of 
mathematical ideas can seem tedious. The choice, therefore, is between puzzling some 
readers and probably putting them off the discussion entirely, and boring others. There is no 
obvious solution. In my experience more linguists need the explanations than not. Every 
effort is made to avoid long-windedness, but where there is a choice between brevity and 
intuitive clarity, the latter wins every time. 

The discussion is in six main parts. The first part motivates the application of cluster analysis
in corpus linguistics. The second deals with data creation: the nature of data, its abstraction 
from text corpora, its representation in a mathematical format suitable for cluster analysis, 
and transformation of that representation so as to optimize its interpretability. The third part 
describes a range of cluster analysis methods and exemplifies their application to data 
created in part two. The fourth shows how these methods can serve as the basis for 
generation of linguistic hypotheses. The fifth reviews existing applications of cluster analysis 
in corpus linguistics, and the sixth identifies software implementations which make the 
clustering methods described in part 3 available for practical application. Exemplification 
throughout the discussion is based on data abstracted from the Diachronic Electronic 
Corpus of Tyneside English.



2. Motivation

This discussion assumes that linguistics is a science and that it should consequently use 
scientific methodology. The currently dominant scientific methodology is the hypothetico-
deductive one associated with the philosopher of science Karl Popper [1959, 1963], in which
scientific research is conducted in a sequence of steps:

i. Some aspect of the natural world, that is, a domain of interest, is selected for study, 
and a research question that will substantially further scientific knowledge of the 
domain is posed.

ii. A hypothesis that answers the research question is stated.

iii. The hypothesis is tested by observation of the domain. If it is incompatible with 
observation the hypothesis must either be emended to make it so or, if this is not 
possible, must be abandoned. If it is compatible then the hypothesis is said to be 
supported but not proven; no scientific hypothesis is ever proven because it is always
open to falsification by new evidence from observation.

On this model, the science of the selected aspect of the domain of interest at any given time 
is a collection of hypotheses that are valid with respect to observations of the domain made 
up to that time, or, in other words, a collection of best guesses about what that aspect of the 
natural world is like.

Because falsifiable hypotheses are central in science, it is natural to ask how they are 
generated. The consensus in philosophy of science is that hypothesis generation is non-
algorithmic, that is, not reducible to a formula, but is rather driven by human intellectual 
creativity in response to a research question [Chalmers 1999; Gauch 2003; Machamer and 
Silberstein 2007; Psillos 2007; Psillos and Curd 2008]. In principle any one of us, whatever 
our background, could wake up in the middle of the night with an utterly novel hypothesis 
that, say, unifies quantum mechanics and Einsteinian relativity, but this kind of inspiration is 
highly unlikely and must be exceedingly rare. In practice, hypothesis generation is a matter 
of becoming familiar with the domain of interest by observation of it, reading the associated 
research literature, formulating a research question which, if convincingly answered, will 
enhance scientific understanding, abstracting data relevant to the research question from the
domain and drawing inferences from it, and on the basis of these inferences formulating a 
hypothesis which interestingly answers the research question. That hypothesis is then tested
using fresh data, that is, with reference to data from the domain not used in the hypothesis 
formulation process.

Cluster analysis is a tool for hypothesis generation. It identifies structure latent in data, and 
awareness of such structure can be used to draw the inferences on the basis of which a 
hypothesis is formulated. To see how this works, let us assume that the domain of interest is 
a speech community and that one wants to understand the relationship between phonetic 
usage and social structure within it; for concreteness, that community will be assumed to be 
Tyneside in north-east England, shown as the rectangle-enclosed area in Figure 2.1.



Figure 2.1: The Tyneside area of Great Britain

The research question is:

Is there systematic phonetic variation in the Tyneside speech community, 
and, if so, does that variation correlate systematically with social factors?

To answer the question, a representative sample of Tyneside speech is collected and 
relevant data are abstracted from it. The sample used here is the Diachronic Electronic 
Corpus of Tyneside English (henceforth DECTE), a collection of interviews with Tyneside 
English speakers that will be fully described in due course. A group of 24 speakers was 
selected at random and a set of phonetic variables descriptive of Tyneside pronunciation 
was defined. The number of times each speaker used the phonetic variable or variables of 
interest was recorded, thereby building up a body of data. To start, each speaker's speech 
was described by a single variable, the phonetic segment Ə1; the labels in the Speaker 

column of Table 2.1 are those used to designate speakers in DECTE, and the values in the  
other column are the frequencies with which each of the corresponding 24 speakers uses 
that segment.

Speaker Ə1

decten1tlsg01 3

decten1tlsg02 8



decten1tlsg03 3

decten1tlsn01 100

decten1tlsg04 15

decten1tlsg05 14

decten1tlsg06 5

decten1tlsn02 103

decten1tlsg07 5

decten1tlsg08 3

decten1tlsg09 5

decten1tlsg10 6

decten1tlsn03 142

decten1tlsn04 110

decten1tlsg11 3

decten1tlsg12 2

decten1tlsg52 11

decten1tlsg53 6

decten1tlsn05 145

decten1tlsn06 109

decten1tlsg54 3

decten1tlsg55 7

decten1tlsg56 12

decten1tlsn07 104

Table 2.1: Frequency data for Ə1

It is easy to see by direct inspection of the data that the speakers fall into two groups: those 
that use Ə1 relatively frequently and those that use it infrequently. Based on this result, the 

obvious hypothesis is that there is systematic variation in phonetic usage with respect to Ə1 
in the speech community. 

If two phonetic variables are used, as in Table 2.2, direct inspection again shows two groups,
those that use both Ə1 and Ə2 relatively frequently and those that do not, and the 

hypothesis is analogous to the one just stated.



Speaker Ə1 Ə2

decten1tlsg01 3 1

decten1tlsg02 8 0

decten1tlsg03 3 1

decten1tlsn01 100 116

decten1tlsg04 15 0

decten1tlsg05 14 6

decten1tlsg06 5 0

decten1tlsn02 103 93

decten1tlsg07 5 0

decten1tlsg08 3 0

decten1tlsg09 5 0

decten1tlsg10 6 0

decten1tlsn03 142 107

decten1tlsn04 110 120

decten1tlsg11 3 0

decten1tlsg12 2 0

decten1tlsg52 11 1

decten1tlsg53 6 0

decten1tlsn05 145 102

decten1tlsn06 109 107

decten1tlsg54 3 0

decten1tlsg55 7 0

decten1tlsg56 12 0

decten1tlsn07 104 93

Table 2.2: Frequency data for Ə1 and Ə2 

There is no theoretical limit on the number of variables that can be used. As the number of 
variables and observations grows, so does the difficulty of generating hypotheses from direct
inspection of the data. In the present case, the selection of Ə1 and Ə2 in Tables 2.1 and 2.2 

was arbitrary, and the speakers could have been described using more phonetic segment 
variables. Table 2.3 shows twelve.



Speaker Ə1 Ə2 o: Ə3 ī eī n a:1 a:2 aī r w

decten1tlsg01 3 1 55 101 33 26 193 64 1 8 54 96

decten1tlsg02 8 0 11 82 31 44 205 54 64 8 83 88

decten1tlsg03 4 1 52 109 38 25 193 60 15 3 59 101

decten1tlsn01 100 116 5 17 75 0 179 64 0 19 46 62

decten1tlsg04 15 0 12 75 21 23 186 57 6 12 32 97

decten1tlsg05 14 6 45 70 49 0 188 40 0 45 72 79

decten1tlsg06 5 0 40 70 32 22 183 46 0 2 37 117

decten1tlsn02 103 93 7 5 87 27 241 52 0 1 19 72

decten1tlsg07 5 0 11 58 44 31 195 87 12 4 28 93

decten1tlsg08 3 0 44 63 31 44 140 47 0 5 43 106

decten1tlsg09 5 0 30 103 68 10 177 35 0 33 52 96

decten1tlsg10 6 0 89 61 20 33 177 37 0 4 63 97

decten1tlsn03 142 107 2 15 94 0 234 15 0 25 28 118

decten1tlsn04 110 120 0 21 100 0 237 4 0 61 21 62

decten1tlsg11 3 0 61 55 27 19 205 88 0 4 47 94

decten1tlsg12 2 0 9 42 43 41 213 39 31 5 68 124

decten1tlsg52 11 1 29 75 34 22 206 46 0 29 34 93

decten1tlsg53 6 0 49 66 41 32 177 52 9 1 68 74

decten1tlsn05 145 102 4 6 100 0 208 51 0 22 61 104

decten1tlsn06 109 107 0 7 111 0 220 38 0 26 19 70

decten1tlsg54 3 0 8 81 22 27 239 30 32 8 80 116

decten1tlsg55 7 0 12 57 37 20 187 77 41 4 58 101

decten1tlsg56 12 0 21 59 31 40 164 52 17 6 45 103

decten1tlsn07 104 93 0 11 108 0 194 5 0 66 33 69

Table 2.3: Frequency data for a range of phonetic segments 

What hypothesis would one formulate from inspection of the data in Table 1.3, taking into 
account all the variables? And what about, say, 100 speakers and 150 variables? These 
questions are clearly rhetorical, and there is a straightforward moral: human cognitive 
makeup is unsuited to seeing regularities in anything but the smallest collections of 



numerical data. To see the regularities we need help, and that is what cluster analysis 
provides.

As noted in the Introduction, cluster analysis is a family of computational methods for 
identification and graphical display of structure in data when the data are too large either in 
terms of the number of variables or of the number of objects described, or both, to be readily
interpretable by direct inspection. All the members of the family work by partitioning a set of 
objects in the domain of interest into disjoint subsets in accordance with how relatively 
similar those objects are in terms of the variables that describe them. The objects of interest 
in Tables 2.1 – 2.3 are speakers, and each speaker's phonetic usage is described by a set of
variables. Any two speakers' phonetic usage will be more or less similar depending on how 
similar their respective variable values are: if the values are identical then so are the 
speakers in terms of their usage, and the greater the divergence in values the greater the 
differences in usage. Cluster analysis of the data in Table 2.3 groups the 24 speakers in 
terms of how similar their frequency of usage of 12 phonetic segments is. There are various 
kinds of cluster analysis; Figure 2.2 shows the result from application of one of the most 
frequently-used of them, hierarchical clustering, to the data. This and other varieties of 
cluster analysis are described in detail later in the discussion; the aim at this stage is to give 
an initial impression of how they can be used in linguistic analysis.

 Figure 2.2: Hierarchical cluster analyses of the data in Table 2.3

Figure 2.2 shows the cluster structure of the speaker data as a hierarchical tree. To interpret 
the tree correctly one has to understand how it is constructed, so a short intuitive account is 
given here. The labels at the leaves of the tree are the speaker-identifiers corresponding to 
those of the data in Table 2.3, abbreviated so as to make them more amenable to graphical 



display. These labels are partitioned into clusters in a sequence of steps. Initially, each 
speaker is interpreted as a cluster on his or her own. At the first step Table 2.3 is searched to
determine which two speakers are most similar in terms of their frequency of usage of the 12
phonetic variables; in practice this involves comparison of the rows of the data table to 
determine which two rows are numerically the most similar, as described in due course, but 
for present expository purposes visual inspection of the cluster tree will suffice. When the 
two most similar speakers are found, they are joined into a superordinate cluster in which 
their degree of similarity is graphically represented by the length of the vertical branches 
joining the subclusters. To judge by the relative shortness of the branches in the tree, the 
singleton clusters g01 and g03 at the very left are the most similar. These are joined into a 
composite cluster (g01 g03). At the second step the data is searched again to determine the 
next-most-similar pair of clusters. Visual inspection indicates that these are g05 and g52 
about a third of the way from the left of the tree, and these are joined into a composite 
cluster (g05 g52). At step 3, the two most similar clusters are the composite cluster (g05 
g52) constructed at step 2 and g07. These are joined into a superordinate cluster ((g05 g52) 
g07). The sequence of steps continues in this way, combining the most similar pair of 
clusters at each step, and stops when there is only one cluster remaining which contains all 
the subclusters. Once the structure of the data has been identified by the above procedure it
can be used for generation of a hypothesis in response to the research question. 

Is there systematic phonetic variation in the Tyneside speech community? 

Since the relative lengths of the branches joining subclusters represents their relative 
similarity, the speakers included in the analysis can be seen to fall into two main clusters, 
labeled A and B in the tree, such that the speakers in in cluster A are relatively much more 
similar to one another than any of them are to speakers in cluster B, and vice versa. A 
reasonable hypothesis based on this finding would be that there is systematic phonetic 
variation in the Tyneside speech community, and more specifically that the speakers who 
constitute that community fall into two main groups. 

Does that variation correlate systematically with social factors?

DECTE includes a range of social information for each speaker, such as age, gender, 
educational level, occupation, and so on. Also included is an indication of whether the 
speaker comes from Newcastle on the north shore of the river Tyne or Gateshead on the 
south side; correlating place of residence with the cluster tree in Figure 2.2 gives the result 
shown in Figure 2.3.



Figure 2.3: Cluster tree of Figure 2.2 with social data

This result supports the hypothesis that there is a systematic correlation between phonetic 
variation and social factors, and more specifically with place of residence: phonetic variation 
among speakers in these two areas of Tyneside is relatively small compared to the relatively 
much larger difference between the areas.

This hypothesis can be refined on the one hand by correlating the internal structures of 
clusters A and B with a larger number of social factors, and on the other by identifying the 
phonetic segments which are most important as determinants of the cluster structure. The 
former is analogous to what has already been described and does not need to be made 
explicit at this stage, though subsequent discussion will do so. One approach to the latter is 
to create summary descriptions of the phonetic characteristics of the two main clusters A and
B and then to compare them. This is done by taking the mean of variable values for the 
speakers in each cluster, as in Table 2.4.

Speaker Ə1 Ə2 o: Ə3 ī eī n a:1 a:2 aī r w

decten1tlsg01 3 1 55 101 33 26 193 64 1 8 54 96

decten1tlsg03 4 1 52 109 38 25 193 60 15 3 59 101

gdecten1tls11 3 0 61 55 27 19 205 88 0 4 47 94



decten1tlsg10 6 0 89 61 20 33 177 37 0 4 63 97

decten1tlsg53 6 0 49 66 41 32 177 52 9 1 68 74

decten1tlsg05 14 6 45 70 49 0 188 40 0 45 72 79

decten1tlsg09 5 0 30 103 68 10 177 35 0 33 52 96

decten1tlsg04 15 0 12 75 21 23 186 57 6 12 32 97

decten1tlsg52 11 1 29 75 34 22 206 46 0 29 34 93

decten1tlsg06 5 0 40 70 32 22 183 46 0 2 37 117

decten1tlsg08 3 0 44 63 31 44 140 47 0 5 43 106

decten1tlsg56 12 0 21 59 31 40 164 52 17 6 45 103

decten1tlsg07 5 0 11 58 44 31 195 87 12 4 28 93

decten1tlsg55 7 0 12 57 37 20 187 77 41 4 58 101

decten1tlsg02 8 0 11 82 31 44 205 54 64 8 83 88

decten1tlsg12 2 0 9 42 43 41 213 39 31 5 68 124

decten1tlsg54 3 0 8 81 22 27 239 30 32 8 80 116

             

Mean A 6.590.5334.0072.1835.4127.00189.8853.5913.4110.6554.2998.53

Cluster A

Speaker Ə1 Ə2 o: Ə3 ī eī n a:1 a:2 aī r w

decten1tlsn01 100 116 5 17 75 0 179 64 0 19 46 62

decten1tlsn04 110 120 0 21 100 0 237 4 0 61 21 62

decten1tlsn07 104 93 0 11 108 0 194 5 0 66 33 69

decten1tlsn02 103 93 7 5 87 27 241 52 0 1 19 72

decten1tlsn06 109 107 0 7 111 0 220 38 0 26 19 70

decten1tlsn03 142 107 2 15 94 0 234 15 0 25 28 118

decten1tlsn05 145 102 4 6 100 0 208 51 0 22 61 104

             

Mean B 116.14
105.4
3

2.5711.71
96.4
3

3.86
216.1
4

32.7
1

0.00
31.4
3

32.4
3

79.57



Cluster B

Table 2.4: Rows of Figure 2.3 grouped by cluster and corresponding means 

All the speakers whom the cluster tree assigns to A are collected in the Cluster A table in 
Table 2.4. The mean of each column in Cluster A is calculated and shown at the bottom of 
the table, and the list of 12 values then represents the average phonetic characteristics of 
the speakers in A. The same is done for B. The means for A and B can now be compared; 
the bar plot in Figure 2.4 shows the result graphically.

Figure 2.4: Bar-plot of mean A and mean B from Table 2.4 

The relative degrees of disparity in phonetic usage are shown by the differences in the 
heights of the bars representing A and B; clearly, the two varieties of schwa are the most 
important differentiators between clusters. 

Cluster analysis can be applied to hypothesis generation in any research where the data 
consists of objects described by variables; since most research uses data of this kind, it is 
very widely applicable. It can usefully be applied where the number of objects and variables 
is so large that the data cannot easily be interpreted by direct inspection, as above. The 
foregoing discussion has sketched one sort of application to linguistic analysis; a few other 
random possibilities are, briefly:

 A historical linguist might want to infer phonetic or phonological structure in a legacy 
corpus on the basis of spelling by cluster analyzing alphabetic n-grams for different 
magnitudes 2, 3, 4... of n.



 A generative linguist might want to infer syntactic structures in a little-known or 
endangered language by clustering lexical n-grams for different magnitudes of n. 

 A philologist might want to use cluster analysis of alphabetic n-grams to see if a 
collection of historical literary texts can be classified chronologically of geographically
on the basis of their spelling.

Further applications to linguistic analysis are given in Chapter 6, the literature review. 



3. Data 

Data is the plural of datum, the past participle of Latin dare, 'to give', and means 'things that 
are given'. A datum is therefore something to be accepted at face value, a true statement 
about the world. What is a true statement about the world? That question has been debated 
in philosophical metaphysics since Antiquity and probably before, and, in our own time, has 
been intensively studied by the disciplines that comprise cognitive science [Audi 2010]. The 
issues are complex, controversy abounds, and the associated academic literatures are vast 
--saying what a true statement about the world might be is anything but straightforward. We 
can't go into all this, and so will adopt the attitude prevalent in most areas of science: data 
are abstractions of what we perceive using our senses, often with the aid of instruments.

Data are ontologically different from the world. The world is as it is; data are an interpretation
of it for the purpose of scientific study. The weather is not the meteorologist’s data –
measurements of such things as air temperature are. A text corpus is not the linguist’s data –
measurements of such things as lexical frequency are. Data are constructed from 
observation of things in the world, and the process of construction raises a range of issues 
that determine the amenability of the data to analysis and the interpretability of the analytical 
results. The importance to cluster analysis of understanding such data issues can hardly be 
overstated [Jain 2010]. On the one hand, nothing can be discovered that is beyond the limits
of what the data says about the world. On the other, failure to understand and where 
necessary to emend relevant characteristics of data can lead to results and interpretations 
that are distorted or even worthless. For these reasons, a detailed account of data issues is 
given before moving on to discussion of cluster analytical methods. 

The discussion is in three main parts. The first part deals with data creation, the second 
presents a geometrical interpretation of data on which all subsequent discussion is based, 
and the third describes several ways of transforming data prior to cluster analysis in terms of
that geometrical interpretation.

Before starting, a short note on the grammar of the word 'data' is advisable. Some writers 
treat is as a plural noun which, historically, it is. Others treat it as a singular. Still others are 
inconsistent their usage. The present writer thinks that consistency of style is important and 
has a pedantic streak, and so will treat 'data' as a plural noun throughout.

For general discussions of data see [Tan et al 2006 ch.2; Izenman 2008, ch.2; Pyle 1999].

3.1 Data creation

3.1.1 Research domain

To state the obvious, data creation presupposes a research domain from which the data is to
be abstracted. In corpus-based linguistics the research domain is some collection of natural 
language utterances. In the present case the domain is Tyneside English [Beal, Burbano-
Elzondo, and Llamas 2012; Wales 2006], and the sample from that domain is the Diachronic
Electronic Corpus of Tyneside English (DECTE) [Corrigan, Mearns, and Moisl 2012]. This 
section first briefly describes the corpus and then gives a detailed account of the DECTE 
phonetic transcriptions on which the cluster analyses in the remainder of the discussion are 
based. 



i. The DECTE corpus 

DECTE contains samples of the Tyneside English dialect dating from the later 20th and the 
early 21st centuries collected from residents of Tyneside and surrounding areas of North-
East England. The main locations in this area represented in the corpus are the cities of 
Newcastle upon Tyne on the north side of the river Tyne and Gateshead on the south side, 
but its geographical reach is currently being extended to include speakers from other regions
in the North-East such as County Durham, Northumberland, and Sunderland. It updates the 
existing Newcastle Electronic Corpus of Tyneside English, which was created between 2000 
and 2005 and consists of two pre-existing corpora of audio-recorded Tyneside speech [Allen 
et al. 2007]. 

 The earlier of the two, the Tyneside Linguistic Survey (TLS), was created in the late 
1960s [Strang 1968; Pellowe et al. 1972; Pellowe and Jones 1978; Jones-Sargent 
1983], and consisted of audio-taped interviews of about 30 minutes' duration with 
Tyneside speakers who were encouraged to talk freely about their lives but were also
asked for judgements on various linguistic features and constructions. These 
interviews were then orthogaphically transcribed in their entirety and the first ten 
minutes or so of each interview phonetically transcribed. Detailed social data for each
speaker was also recorded. The TLS project was never satisfactorily concluded, and 
the materials it produced were archived and largely forgotten until Joan Beal and 
Karen Corrigan of Newcastle University undertook to recover them and make them 
available to the corpus linguistics community, which led to their incorporation into the 
NECTE corpus. It is presently unclear how many interviews were conducted and 
associated transcriptions produced by the TLS project. The NECTE project was able 
to identify components relating to 114 interviews, or which only 37 are complete sets 
consisting of audio interview, orthographic and phonetic transcription, and social 
data.

 The Phonological Variation and Change in Contemporary Spoken English (PVC) 
project (Milroy et al. 1997; Docherty and Foulkes 1999; Watt and Milroy 1999) was 
collected between 1991 and 1994, and, as its name indicates, it investigated patterns
of phonological variation and change in Tyneside English. The core of its materials 
consists of 18 digital audio-taped interviews of up to one hour's duration with self-
selected dyads of friends or relatives, matched in terms of age and social class, who 
had freedom to converse on a wide range of subjects with minimal interference from 
the fieldworker. Only selective phonetic transcriptions of lexical items of interest were 
produced, and records of social data were limited to the gender, age and broadly 
defined socio-economic class of the participants.

NECTE amalgamated the TLS and PVC materials into a single Text Encoding Initiative 
(TEI)-conformant XML-encoded corpus and made them available online in a variety of 
aligned formats: digitized audio, standard orthographic transcription, phonetic transcription, 
and part-of-speech tagged. 

In 2011-12 the DECTE project combined NECTE with the NECTE2 corpus, which was 
begun in 2007. NECTE2 consists of digitized audio recordings and orthographic 
transcriptions of dyadic interviews, together with records of informant social details and other
supplementary material, collected by undergraduate and postgraduate students and 



researchers at Newcastle University as part of a learning and teaching initiative which 
encompasses courses in areas such as linguistic variation and change, sociolinguistics and 
discourse analysis. The interviews record the language use of a variety of local informants 
from a range of social groups, and, as indicated above, extend the geographical domain 
covered in the earlier collections to include other parts of the North East of England. 
Successive cohorts of students add their own interviews to NECTE2. 

The components of DECTE and their interrelationship are shown schematically in Figure 3.1.

Figure 3.1: Structure of the DECTE corpus

The resulting DECTE corpus imposes a uniform structure on its components and is 
conformant with the current P5 Text Encoding Initiative guidelines.

ii. The DECTE phonetic transcriptions

The main motivator of the TLS project was to see whether systematic phonetic variation 
among Tyneside speakers of the period could be interestingly correlated with variation in 
their social characteristics. To this end they developed a methodology that was radical at the 
time and remains so today: in contrast to the then-universal and still-dominant theory driven 
approach, where social and linguistic factors are selected by the analyst on the basis of 
some combination of an independently-specified theoretical framework, existing case 
studies, and personal experience of the domain of inquiry, the TLS proposed a 
fundamentally empirical approach in which salient factors are extracted from the data itself 
and then serve as the basis for model construction. To realize this research aim using its 
empirical methodology, the TLS had to compare the audio interviews it had collected at the 
phonetic level of representation. This required that the analog speech signal be discretized 
into phonetic segment sequences, or, in other words, to be phonetically transcribed. 
Phonetic transcriptions for 63 speakers survive and have been incorporated into DECTE; 
these are the basis for the case study developed in this book. 



The TLS project wanted a very detailed phonetic transcription of its audio files, and the 
standard International Phonetic Alphabet scheme was not detailed enough. It therefore 
developed an extended version of the IPA scheme; the sample from the TLS encoding 
manual in Figure 3.2 shows what this was like:

Figure 3.2: Sample page from the Tyneside Linguistic Survey's phonetic transcription
scheme

There are four columns in the encoding table: the first three give symbols for increasingly 
fine-grained transcription, and the fourth examples of what speech sounds the symbols 
represent: the OU column lists phonological segments, the PDV ('Putative Diasystemic 
Variable') column lists IPA-level phonetic segments, and the State column lists the TLS's 
detailed elaboration of the IPA scheme. 



The graphical symbols had to be numerically encoded for computational processing. This 
encoding works as follows:

 Each PDV symbol was assigned a unique four-digit code. 

 A fifth digit was added to any given PDV code to give a five-digit state code. This fifth 
digit was the State symbol's position in the left-to-right sequence in the State column.

For example, the PDV code for is 0002; the State code for, say, is 00026, 

because is sixth in the left-to-right State symbol sequence. 

Using this encoding scheme, a PDV-level transcription of any given speaker interview audio 
file is a sequence of four-digit codes, and a State-level transcription is a sequence of five-
digit codes. Reference to the DECTE transcriptions will henceforth be to the PDV level.

Associated with each of the 63 DECTE speakers is a file representing a transcription of 
about the first 10 minutes of the audio interview and containing a sequence of numerical 
State-level codes of which only the first four PDV-level digits are used in what follows. A 
fragment of one of these is shown, with XML markup, in Figure 3.3.

<u who="informantTlsg01">
02441 01123 02301 02621 02363 02741 02881 00906 02081 02301 02322 01443 
02741 02201 01284 02383 02801 00421 02421 02501 00342 02164 02721 02021 
02741 02642 04321 02621 00503 02825 02301 02721 00246 02341 12601 02642 
02541 01284 02561 02881 01641 02941 02781 00161 02561 02363 02301 01181 
02825 02441 01123 02301 02621 02365 02721 00903 02561 02363 02541 02861 
02721 02605 01822 02263 00906 00241 02825 02621 02083 02421 02621 02263 
02861 00023 02301 02442 01041 02301 02621 02364 02606 00343 02301 02621 
02621 00823 02741 02041 02741 02363 02861 01164 02364 02541 02861 00501 
02721 02605 01822 02263 02781 00501 02221 02801 02123 02701 00144 02822 
02741 00504 02301 00161 02621 02701 01424 02621 00823 02606 01942 02704 
01443 02621 02383 02861 00504 02621...... (etc)
</u>

Figure 3.3: DECTE transcription codes

The 63 phonetic transcription files and the social data associated with them constitute the 
corpus from which the data used in the remainder of this discussion was abstracted. For 
ease of cross-reference, the DECTE naming conventions for speakers together with the 
phonetic symbols and corresponding numerical codes are used throughout.

A final note. Earlier work [Moisl and Maguire 2008; Moisl, Maguire, and Allen 2006] on the 
TLS phonetic transcriptions refers to 64 of them, but in the course of writing this book one of 
these, decten1tlsg57, was found to be a doublet of decten1tlsg50 and has been omitted. 
This needs to be kept in mind when referring to the earlier work.

3.1.2 Research question



Any aspect of the world can be described in an arbitrary number of ways and to arbitrary 
degrees of precision. A desktop computer can, for example, be described in terms of its role 
in the administrative structure of an organization, its physical appearance, its hardware 
components, the functionality of the software installed on it, the programs which implement 
that functionality, the design of the chips on the circuit board, or the atomic and subatomic 
characteristics of the transistors on the chips, not to speak of its connectivity to the internet 
or its social and economic impact on the world at large. Which description is best? That 
depends on why one wants the description. A software developer wants a clear definition of 
the required functionality but doesn't care about the details of chip design; the chip designer 
doesn't care about the physical appearance of the machines in which her devices are 
installed but a marketing manager does; an academic interested in the sociology of 
computers doesn't care about chip design either, or about circuit boards, or about programs. 
In general, how one describes a thing depends on what one wants to know about it, or, in 
other words, on the question one has asked.

The implications of this go straight to the heart of the debate on the nature of science and 
scientific theories in Philosophy of Science [Chalmers 1999; Gauch 2003; Machamer and 
Silberstein 2007; Psillos 2007; Psillos and Curd 2008], but to avoid being drawn into that 
debate this discussion adopts the position that is pretty much standard in scientific practice: 
the view that there is no theory-free observation of the world. In essence, this means that 
there is no such thing as objective observation in science: entities in a domain of inquiry only
become relevant to observation in terms of a research question framed using the axioms 
and ontology of a theory about the domain. For example, in linguistic analysis variables are 
selected in terms of the discipline of linguistics broadly defined, which includes the division 
into subdisciplines such as sociolinguistics and dialectology, the subcategorization within 
subdisciplines such as phonetics through syntax to semantics and pragmatics in formal 
grammar, and theoretical entities within each subcategory such as constituency structures 
and movement in syntax. Claims, occasionally seen, that the variables used to describe a 
corpus are 'theoretically neutral' are naive: even word categories like 'noun' and 'verb' are 
interpretative constructs that imply a certain view of how language works, and they only 
appear to be theory-neutral because of familiarity with long-established tradition.

In a scientific context, the question one has asked is the research question component of the
hypothetico-deductive model outlined earlier. Given a domain of interest, how is a good 
research question formulated? That, of course, in the central question in science. Asking the 
right questions is what leads to scientific breakthroughs and makes reputations, and, beyond
a thorough knowledge of the research area and possession of a creative intelligence, there 
is no known guaranteed route to the right questions. What is clear from the preceding 
paragraph, though, is that a well-defined question is the key precondition to the conduct of 
research, and more particularly to the creation of the data that will support hypothesis 
formulation. The research question provides an interpretative orientation; without such an 
orientation, how does one know what to observe in the domain, what is important, and what 
is not? A linguist's domain is natural language, but syntacticians want to know different 
things about it than semanticists, and they ask commensurately different questions. In the 
present case we will be interested in sociophonetics, and the research question is the one 
stated earlier:

Is there systematic phonetic variation in the Tyneside speech community, 
and, if so, does that variation correlate systematically with social 



variables?

3.1.3 Variable selection

Given that data are an interpretation of some domain of interest, what does such an 
interpretation look like? It is a description of objects in the domain in terms of variables. A 
variable is a symbol, that is, a physical entity to which a meaning is assigned by human 
interpreters; the physical shape A in the English spelling system means the phoneme /a/, for 
example, because all users of the system agree that it does. The variables chosen to 
describe a domain constitute the conceptual template in terms of which the domain is 
interpreted and on which the proposed analysis is based. If the analysis is to be valid with 
respect to the domain, therefore, it is crucial that the set of selected variables be adequate in
relation to the research question, where adequacy is understood as follows:

 The variables should represent all and only those aspects of the domain which are 
relevant to the research question, that is, relevant aspects of the domain should not 
be unrepresented in the set of variables, and irrelevant aspects should not be 
represented. Failure to include relevant aspects in the data renders the description of
the domain incomplete and thereby self-evidently compromises the validity of 
analysis based on it; inclusion of irrelevant aspects is less serious but introduces 
potentially confounding factors into an analysis.

 Each variable should be independent of all the others in terms of what it represents in
the domain, that is, the variables should not overlap with one another in what they 
describe in the domain because such overlap describes the same thing multiple 
times and can thereby skew the analysis by overemphasizing the importance of 
some aspects of the domain over others.

In general, adequacy so defined cannot be guaranteed in any given research application 
because neither relevance nor independence is always obvious. Any domain can be 
described by an essentially arbitrary number of finite sets of variables, as the foregoing 
example of computer description makes clear; selection of one particular set can only be 
done on the basis of personal knowledge of the domain and of the body of scientific theory 
associated with it, tempered by personal discretion. In other words, there is no algorithm for 
choosing an adequate set of variables. 

The research question defined on DECTE involves phonetic analysis, and that implies 
phonetic transcription of the audio speaker interviews: a set of variables is defined each of 
which represents a characteristic of the speech signal taken to be phonetically significant, 
and these are then used to interpret the continuous signal as a sequence of discrete 
symbols. The standard way of doing this is to use the symbols defined by the International 
Phonetic Alphabet (IPA), but the TLS researchers felt that the IPA was too restrictive in the 
sense that it did not capture phonetic features which they considered to be of interest, and 
so they invented their own transcription scheme, described earlier. The remainder of this 
discussion refers to data abstracted from these TLS transcriptions, but it has to be 
understood that the 156 variables in that scheme are not necessarily optimal or even 
adequate relative to our research question. They only constitute one view of what is 
important in the phonetics of Tyneside speech. In fact, as we shall see, many of them have 
no particular relevance to the research question.



3.1.4 Variable value assignment

Once variables have been selected, a value is assigned to each of them for each of the 
objects of interest in the domain. This value assignment is what makes the link between the 
researcher's conceptualization of the domain in terms of the variables s/he has chosen and 
the actual state of the world, and allows the resulting data to be taken as a valid 
representation of the domain. The type of value assigned to any given variable depends on 
its meaning. The fundamental distinction of types is between quantitative, that is, numerical 
values and qualitative ones such as binary 'yes / no' or categorial 'poor / adequate / good / 
excellent' [Jain & Dubes ch. 2; Xu & Wunsch 2009, ch.2; Jain et all 1999, 270f; Kaufman & 
Rousseeuw 1990 ch 2; Gan et al chs.2,3]. This discussion concentrates on quantitative 
variables because the vast majority of clustering applications are defined relative to them, 
but the literature cited in the course of discussion also describes provisions for clustering of 
qualitative variables.

The objects of interest in DECTE are the 63 speakers, each of whom is described by the 
values for each of the 156 phonetic variables. What kind of value should be assigned? One 
possibility is to use qualitative binary ones: the value of any given variable is 'yes' if the 
speaker in question uses the corresponding phonetic segment in his or her interview, and 
'no' if not. Another, and the one adopted here, is to use quantitative values which represent 
the number of times the speaker uses each of the phonetic segments. 

3.1.5 Data representation

If they are to be analyzed using mathematically-based computational methods like cluster 
analysis, the descriptions of the entities in the domain of interest in terms of the selected 
variables must be mathematically represented. A widely used way of doing this in, for 
example, information retrieval [Manning & Schütze 1999, ch. 15.2; Manning et al 2008, 
ch.14], and the one used throughout the remainder of the discussion, is based on the 
concept of the vector. A vector is a sequence of n numbers each of which is indexed by its 
position in the sequence. Figure 3.4 shows n = 6 real-valued numbers, where the first 
number v1 is 2.1, the second v2 is 5.1, and so on.

Figure 3.4:  A vector

Vectors are a standard data structure in computer science and are extensively used in 
numerical computation. Applied to the DECTE data, each speaker profile can be represented
as a 156-component vector in which every component represents a different PDV variable, 
and the value in any given vector component is the frequency with which the speaker uses 
the associated PDV variable. Figure 3.5 shows such a vector, including phonetic segment 
symbols and the corresponding PDV codes.



Figure 3.5: Vector representation of phonetic profile for a single DECTE speaker

Speaker dectetlsg01 uses phonetic segment 0244 31 times, 0112 28 times, and so on. The 
set of 63 DECTE speaker vectors is assembled into a matrix MDECTE in which the rows i 
(for i = 1..n, where n is the number of speakers) represent the speakers, the columns j (for j 
= 1..156) represent the PDV variables, and the value at MDECTEij is the number of times 

speaker i uses the phonetic segment j. A fragment of this 63 x 156 matrix is shown in Figure 
3.6. MDECTE is the basis for all subsequent DECTE-based examples.

Figure 3.6: The matrix MDECTE of the 63 DECTE phonetic profile vectors

3.1.6 Data validation

The most basic characteristic of data is that it be complete and accurate, where ‘complete’ 
means that all variables for all cases in the data have values associated with them, and 
‘accurate’ that all values assigned to variables faithfully reflect the reality they represent. 
These are stringent requirements: most datasets large enough to have cluster analysis 
usefully applied to them probably contain error, known as 'noise', to greater or lesser 
degrees. Measurement error arises in numerous ways –tolerances in measuring 
instruments, human inaccuracy in the use of the instruments, corruption at one or more 
points in data transmission, and so on.

Because error in data distorts analytical results, it has to be eliminated as much as possible. 
This is a two-step process: the first step is to determine the amount and nature of the error, 
and the second is to mitigate or remove it. Methods for error identification and correction are 
discussed in the relevant textbooks, for example [Hair et al. 1998, ch. 2; Larose 2005, ch.2; 
Tan et al 2006]. 

The DECTE data is generated by counting the frequency of phonetic segments in interviews,
so completeness and accuracy should not be issues if the survey is carefully done using a 
reliable procedure; manual counting of features in physical text by direct observation is in 
general far less accurate than the software equivalent for electronic text.

3.2 Data geometry



Data matrices have a geometrical interpretation, and the remainder of the discussion is 
based on it. This section first presents some relevant mathematical and geometrical 
concepts and then shows how data can be represented and interpreted in terms of them.

3.2.1. Space

In colloquial usage, the word 'space' denotes a fundamental aspect of how humans 
understand their world: that we live our lives in a three-dimensional space, that there are 
directions in that space, that distances along those directions can be measured, that relative 
distances between and among objects in the space can be compared, that objects in the 
space themselves have size and shape which can be measured and described. The earliest 
geometries were attempts to define these intuitive notions of space, direction, distance, size,
and shape in terms of abstract principles which could, on the one hand, be applied to 
scientific understanding of physical reality, and on the other to practical problems like 
construction and navigation. Basing their ideas on the first attempts in ancient Mesopotamia 
and Egypt, Greek philosophers from the sixth century BC onwards developed such abstract 
principles systematically, and their work culminated in the geometrical system attributed to 
Euclid (floruit c.300 BC), which remained the standard for more than two millennia thereafter 
[Tabak 2004; Cooke 2005].

 In the nineteenth century AD, the validity of Euclidean geometry was questioned for the first 
time both intrinsically and as a description of physical reality. It was realized that the 
Euclidean was not the only possible geometry, and alternative ones were proposed in which,
for example, there are no parallel lines and the angles inside a triangle always sum to less 
than 180 degrees. Since the nineteenth century these alternative geometries have continued
to be developed without reference to their utility as descriptions of physical reality, and as 
part of this development 'space' has come to have an entirely abstract meaning which has 
nothing obvious to do with the one rooted in our intuitions about physical reality: a space 
under this construal is a set on which one or more mathematical structures are defined, and 
is thus a mathematical object rather than a humanly-perceived physical phenomenon. The 
present discussion uses 'space' in the abstract sense; the physical meaning is often useful 
as a metaphor for conceptualizing the abstract one, though it can easily lead one astray.

3.2.2. Cartesian product

Given two sets A and B, the Cartesian product (Whitehead and Towers 2002) of A and B is 
the set of all possible unique ordered pairings of members of A with members of B, that is, 
A×B = {(a,b)|a ∈ A and b ∈ B}, where × denotes multiplication, | is read as ‘such that’, ∈  is 
read as ‘belongs to’, and the paired brackets {. . .} denote a set. The expression A× B = 
{(ab)|a ∈ A and b ∈ B} therefore reads: ‘The Cartesian product of set A and set B is the set of 
all pairs (ab) such that a belongs to set A and b belongs to set B’. If, for example, A = {vw} 
and B = {xyz}, then A×B = {(vx)(vy)(vz)(wx)(wy)(wz)}. The Cartesian product of three sets 
A×B×C is the set of all possible ordered triples of members of A, B, and C, that is, A×B×C = 
{(abc)|a ∈ A and b ∈ B and c ∈ C}, the Cartesian product A×B×C×D is the set of all possible 
quadruples, and so on for any number n of sets. Note that these n-tuples are ordered: A×B 
generates all possible pairs (a ∈ A,b ∈ B), and B×A all possible pairs (b ∈ B,a ∈ A). The sets 
multiplied by Cartesian product need not be different; the same set can be multiplied by itself
any number of times. N-fold multiplication of A, for example, generates the set of all possible 
unique n-tuples of the the components of A; A×A generates the set of pairs {(aa)(ab)(ba)



(bb)}, A×A×A generates the set of triples {(aaa)(aab)(aba)(abb)(baa)(bab)(bba)(bbb)}, and so
on.

3.2.3. Vector space

If the mathematical structures of addition and scalar multiplication, that is, multiplication by a 
single number, are defined on the n-tuples of a Cartesian product X, then X together with 
these two structures is a vector space V subject to a range of conditions which are for 
present purposes assumed to apply (Lay 2010). The n-tuples in a vector space are referred 
to as vectors, and n is the dimension both of the vectors and of the space itself. 

Given an n-dimensional vector space V, n vectors can be selected from the space to 
constitute a basis for it, and the set of these n vectors is so called because all other vectors 
in V can be generated from it using the operations of addition and scalar multiplication, as 
described below. Selection of basis vectors is constrained by certain conditions explained in 
any and every linear algebra textbook, but understanding of these constraints is 
unnecessary for present purposes because we shall be using orthogonal bases, and such 
bases automatically satisfy the conditions. Orthogonal basis vectors have the property that 
their inner product is zero; the inner product of n-dimensional vectors v and w, also called 
the dot product and written v.w, is defined by

v.w = v1w1 + v2w2 +. . . +vnwn 

that is, corresponding components of v and w are multiplied and all the products summed. 
For n = 2, the inner product of, say, v = [2.2,3.5] and w = [1.9,6.0] is (2.2×1.9) + (3.5×6.0) = 
25.18, and so v and w are not orthogonal, but the inner product of v = [12.89,0] and w = 
[0,3.8] is 0, and in this case they are.

For orthogonal basis vectors v1,v2, . . . vn and scalars s1, s2, . . . sn, a linear combination of

the v1 . . . vn generates a new vector x of the same dimensionality:

x = [(s1v1) + (s2v2) +. . .+ (snvn)]

where, in multiplication of a vector by a scalar, each component of the vector is multiplied by 
the scalar, and in vector addition corresponding components are added. For example, take V
to be based on a two-fold Cartesian product A = R×R of the set of real numbers R. Select 
any two orthogonal vectors from V, say v1 = [12.89,0] and v2 = [0,3.8], adopting the 

convention that vectors are shown between square brackets and components are comma-
separated. Table 3.1 then shows some linear combinations of v1 and v2, using randomly 

selected s-values.

Table 3.1: Examples of linear combinations



It should be clear from Table 3.1 that every different combination of scalars s1 and s2 results

in a different vector generated from v1 and v2, and, because there is no constraint on the 

choice of scalars, there is correspondingly no constraint on the number of vectors than can 
be generated in this way. 

Vector spaces have a geometrical interpretation. Under this interpretation, orthogonal 
vectors are perpendicular to one another, as in Figure 3.7.

Figure 3.7: Two and three-dimensional vector spaces with orthogonal bases

Figure 3.7a shows the geometrical interpretation of a two-dimensional vector space defined 
on the set of real numbers whose basis is the two orthogonal vectors v = [1,0] and w = [0,1], 
and Figure 3.7b a three-dimensional space with orthogonal basis vectors v = [1,0,0], w = 
[0,1,0], and x = [0,0,1]. This idea extends to any dimensionality n. For n = 4 the analogy 
between mathematical and physical space breaks down in that four and higher dimensional 
spaces can neither be conceptualized nor represented in terms of physical space as in 
Figure 3.7, except in the special case where the fourth dimension is time and the physical 
representation can be animated to show the temporal evolution of the space. Mathematically
and geometrically, however, higher-dimensional spaces are defined in the same way as the 
foregoing lower-dimensional ones; for n= 2 and n =3 the basis vectors are the familiar 
Cartesian coordinates.

Vectors generated by linear combination of the basis vectors of an n-dimensional space are 
conceptualized as coordinates of points in the space. Thus, for the linear combination of the 
basis vectors v = [1,0] and w = [0,1] with randomly selected scalars s1 = 0.9 and s2 = 0.8, 

the resulting vector is a point at coordinates [0.9,0.8], as in Figure 3.8. This idea extends, 
again, to any dimensionality.



Figure 3.8: Linear combination of orthogonal basis vectors v = [1,0] and w = [0,1]with scalars
s1 = 0.9 and s2 = 0.8 as coordinates in a two-dimensionalvector space: x = (0.9×[1,0])

+(0.8×[0,1])= [0.9,0.8]

Finally, note in the above examples that the non-zero components of basis vectors can be 
any real number. It is, however, convenient to have a standard basis for every dimensionality
n = 1,2,3. . . . These standard bases, called orthonormal bases, consist of vectors whose 
values are restricted to 0 and 1,  so that the basis for n = 2 is (1,0), (0,1), for n = 3 (1,0,0), 
(0,1,0), (0,0,1) and so on. This restriction does not affect the capacity of the bases to 
generate all other n-dimensional vectors in the space.

3.2.4. Manifolds in vector space

Given a set A and an n-fold Cartesian product X of A, a relation is a subset of X. The subset 
may be random or made on the basis of some explicit criterion. In the latter case, for 
example, if A is the set of all people in some city, then X = A×A is the set of all possible 
pairings of people in the city. If one now defines a selection criterion, say ‘loves’, then the 
subset of pairs which satisfy the criterion constitute the relation: it is the set of all pairs of 
people one of whom loves the other.

In a vector space, a relation defined on an n-fold Cartesian product is a subset of vectors in 
the space. Geometrically, such a subset is a manifold (Lee 2010) whose constituent points 
define a shape in the space. Figure 3.9 shows a collection of two-dimensional vectors and  
illustrates the corresponding locations of those vectors in the two-dimensional space.

Figure 3.9: A manifold in two-dimensional space

The shape here is a square plane, but many other shapes are possible; Figure 3.10 gives a 
few examples.



Figure 3.10: Examples of manifolds in two-dimensional and three-dimensional spaces

Figures 3.9 and 3.10a–3.10d exemplify a fundamental distinction between two types of 
manifold shape, linear and nonlinear, which will be important in subsequent discussion 
because it reflects a corresponding distinction in the characteristics of natural processes and
the data that describe them. As their names indicate, linear manifolds are straight lines, as in
Figure 3.10a, and planes, as in 3.9, and nonlinear ones are curved lines and surfaces, as in 
3.10b–3.10d. In the nonlinear case the complexity of curvature can range from simple 
curved lines and planes to highly convoluted fractal shapes. What has been said about 
manifolds in two-dimensional space applies straightforwardly to arbitrary dimensionality n; 
for n > 3 lines are referred to as hypercurves and planes and nonlinear surfaces as 
hyperplanes and hypersurfaces.

Hyper-objects cannot be directly visualized or even conceptualized except by analogy with 
two and three dimensionalshapes, but as mathematical objects they are unproblematical.

3.2.5. Proximity in vector space

The geometrical proximity of two vectors v and w in a vector space V is determined by a 
combination of the size of the angle between the lines joining them to the origin of the 
space’s basis, and by the lengths of those lines. Assume that v and w have identical lengths 
and are separated by an angle θ, as in Figure 3.11. 



Figure 3.11: An angle θ between vectors v and w in two-dimensional space

If the angle is kept constant and the lengths of the vectors are made unequal by lengthening 
or shortening one of them, then the distance increases, as in Figures 3.12a and 3.12b; if the 
lengths are kept equal but the angle is increased the distance between them increases 
(Figure 3.12c), and if the angle is decreased so is the distance (Figure 3.12d).

Figure 3.12: Increasing and decreasing the distance between v and w



The proximity of v and w in this two-dimensional space, and generally of any two vectors in 
n-dimensional space, can be found either by measuring the distance between them directly 
or by measuring the angle between them. These are dealt with separately, beginning with 
angle.

The angle between two vectors v and w can be found by first finding its cosine and then 
translating that into the corresponding angle using standard trigonometric tables. The cosine 
is found using the following formula.

where:

• θ is the unknown angle between v and w.

• |v| and |w| are the lengths or ‘norms’ of v and w, that is, the lengths of the lines 
connecting them to the origin in the basis, as in Figure 3.12. The norm of an n-
dimensional vector v = [v1,v2 . . . vn] is defined as 

• The division of a vector v by its length |v| is always a unit vector, that is, a vector of 
length 1. 

• The dot designates the dot product, as described earlier.

The formula for finding the cosine of the angle between two vectors is based on the 
observation that, if the lengths of the vectors is the same, then the sole determinant of the 
distance between them is the angle, as noted. The formula rescales both vectors to the 
same length, that is, 1, and the dot product of the rescaled vectors is the cosine of the angle 
between them.

To see why the dot product of length-normalized vectors should be the cosine of the angle 
between them, recall that the cosine of either one of the non-right angles in a right-angled 
triangle is defined as the ratio of the length of the side adjacent to the angle of interest to the
hypotenuse, as in Figure 3.13.



Figure 3.13: Definition of cosine

Two unit vectors v = [1,0] and w = [1,0] occupy the same location in two-dimensional space, 
that is, they have the same length 1 and the angle between them is 0, as shown in Figure 
3.14a. The ratio of the hypotenuse to the side adjacent to θ is 1/1, and cosine(θ) is 
consequently 1.

The vector v is rotated 30 degrees about the origin keeping its length constant; the new 
coordinates are [0.87,0.50] as in Figure 3.14b. The vectors v and w have moved apart in the 
two-dimensional space and so are no longer identical, but they do retain some similarity. The
degree of similarity can be determined by projecting v onto w, that is, by drawing a line from 
v perpendicular to a line drawn the origin to w, as in Figure 3.14b. The length of the line 
segment from the origin to where the perpendicular meets the origin-to-w line is given by the 
inner product of v and w, and is the degree to which v and w are similar. It is also the length 
of the side of a right-angled triangle adjacent to θ, so that cosine(θ) can be calculated. Now 
rotate v a further 30 degrees as in Figure 3.14c, again keeping its length constant: the 
vectors have moved further apart in the space, and their similarity and the cosine have 
decreased commensurately. And, finally, v is rotated a further 30 degrees as in Figure 3.14d,
so that the distance between v and w increases yet further, the projection of v on w, that is, 
their degree of similarity, is 0, and cosine(θ) is also 0.

Figure 3.14 Vector projections for different angles:

(a): v and w identical; v.w = (1×1)+(0×0) = 1; cosine(θ) = 1/1 = 1



(b): v rotated 30 degrees; v.w=(0.87×1)+(0.5×0)=0.87; cosine(θ) = 
0.87/1 = 0.87

(c): v rotated 60 degrees; v.w = (0.5×1)+(0.87×0) = 0.5; cosine(θ)

= 0.5/1 = 0.5

(d): v rotated 90 degrees; v.w=(0×1)+(1×0) = 0; cosine(θ) = 0/1 = 0

Moving on to proximity measurement by distance, the distance between two vectors v and w
in a vector space V can be measured in terms of a metric. Given a set X, a metric (cf. Deza 
and Deza (2009) and O Searcoid (2006)) is a function d : X ×X →R if, for all x,y, z ∈ X, the 
following properties hold:

1. d(x,y) ≥ 0, that is, the distance between any two vectors in the space is non-
negative.

2. d(x,y) = 0 if and only if x = y, that is, the distance from a vector to itself is 0, and for
vectors which are not identical is greater than 0.

3. d(x,y) = d(y,x), that is, distances are symmetrical.

4. d(x,z) ≤ d(x,y) +d(y, z), that is, the distance between any two vectors is always less
than or equal to the distance between them and a third vector. This is the triangle 
inequality, shown diagrammatically in Figure 3.15.

Figure 3.15: Triangle inequality for distances among vectors in metric space

A metric space M(V,d) is a vector space V on which a metric d is defined in terms of which 
the distance between any two points in the space can be measured. Numerous distance 
metrics exist (Deza and Deza 2009: Chs. 17, 19). For present purposes these are divided 
into two types:

1. Linear metrics, where the distance between two points in a manifoldis taken to be 
the length of the straight line joining the points, or some approximation to it, without 
reference to the shape of the manifold.



2. Nonlinear metrics, where the distance between the two points is the length of the 
shortest line joining them along the surface of the manifold and where this line can 
but need not be straight.

This categorization is motivated by the earlier observation that manifolds can have shapes 
which range from perfectly flat to various degrees of curvature. Where the manifold is flat, as
in Figure 3.16a, linear and nonlinear measures are identical. Where it is curved, however, 
linear and nonlinear measurements can differ to varying degrees depending on the nature of
the curvature, as shown in Figures 3.16b and 3.16c.

a: Linear and nonlinear 
distance between points on a 
flat manifold

b: Linear and nonlinear 
distance between points on a 
moderately curved manifold

c: Linear and nonlinear distance
between points on a strongly 
curved manifold

Figure 3.16: Linear and nonlinear distance on flat and curved manifolds

Distance in vector space will figure prominently in the discussion from this point onwards, 
and as such it is discussed in some detail; see further Deza and Deza (2009), Everitt et al. 
(2011), Gan, Ma, and Wu (2007), Jain, Murty, and Flynn (1999), and Xu and Wunsch (2009).

The most commonly used linear metric is the Minkowski, given below; for others see Deza 
and Deza (2009).

• M is a matrix each of whose n-dimensional row vectors specifies a point in n-
dimensional metric space.

• i and j index any two row vectors in M.

• p is a real-valued user-defined parameter in the range 1. . ∞.

• | Mi,j−Mj,k | is the absolute difference between the coordinates of i and j in the space.

• ∑
k=1..n

 | Mi, j −Mj,k | generalizes to n dimensions the Pythagorean theorem for the 

length of the hypotenuse of a right angled triangle in two dimensions, which is the 
shortest distance between any two 2-dimensional vectors.



Three parameterizations ofMinkowski distance are normally used in clustering contexts. 
Where p = 1 the result is the Manhattan or city-block distance:

which simplifies to  

where the vertical bars | . . . | indicate absolute value, so that, for example, |2−4| is 2 rather 
than -2; this captures the intuition that distances cannot be negative. If, for example, n = 2, 
Mi = [6,8] and Mj = [2,4], then the Manhattan distance d(Mi,Mj) is calculated as in Figure 

3.17.

Figure 3.17: Calculation of Manhattan distance between row vectors i and j of M

Figure 3.17 demonstrates the reason for the names ‘Manhattan’ and ‘city block’: to get from 
one corner of a city block to the diagonally opposite one it is necessary to walk around the 
block, and the distance walked is the sum of the lengths of its sides.

By far the most often used parameterization of this metric is p = 2, the Euclidean distance: 

This is just the Pythagorean rule known, one hopes, to all schoolchildren, that the length of 
the hypotenuse of a right-angled triangle is the square root of the sum of the squares of the 
lengths of the other two sides. Again for n = 2, Mi = [6,8] and Mj = [2,4], the Euclidean 



distance d(Mi,Mj) is calculated as in Figure 3.18, and it is the shortest distance between the 

two points.

Figure 3.18: Calculation of Euclidean distance between row vectors i and j of M

Finally, for p = ∞, the result is the Chebyshev distance:

which simplifies to

The parameter p can be any positive real-number value: where 1 < p < 2, the Manhattan 
approximation approaches the Euclidean distance, and where p > 2 the approximation 
moves away from the Euclidean and approaches the Chebyshev. Like the Euclidean 
distance, the Manhattan distance is based on the differences between any pair of row 
vectors Mi and Mj in their n dimensions but it merely sums the absolute values of the 

differences without using them to calculate the shortest distance, and is thereby an 
approximation to the shortest distance; Chebyshev takes the distance between any pair of 
row vectors Mi and Mj to be the maximum absolute difference across all n dimensions and, 

like Manhattan, is therefore an approximation to linear distance.

There are many nonlinear metrics (Deza and Deza 2009), the most useful of which for 
present purposes is the geodesic. The word ‘geodesy’ comes from Greek geodaisia, ‘division
of the earth’; geodesic distance is the shortest distance between any two points on the Earth
measured along its curved surface as opposed to the linear shortest distance, as in Figure 
3.19.



Figure 3.19: Linear geophysical and nonlinear geographical distance between points on the
Earth's surface

Mathematically, geodesic distance is a generalization of linear to nonlinear distance 
measurement in a space: the geodesic distance g(x,y) is the shortest distance between two 
points x and y on a manifold measured along its possibly-curved surface (Deza and Deza 
2009). One approach to measurement of geodesic distance on manifolds is to approximate it
using graph distance (Lee and Verleysen 2007), and that is the approach taken here. To see 
how this approximation works, we begin with the small nonlinear data matrix M and 
scatterplot showing the corresponding nonlinear manifold shape in Figure 3.20. 

Figure 3.20: Nonlinear data matrix and corresponding scatterplot

Given a matrix M with m rows and n columns, a Euclidean distance matrix D is an m × m 
matrix each of whose values dij (for i, j =1..m) is the Euclidean distance from row vector i to 

row vector j of M in n-dimensional space. Figure 3.21a shows all the distances d for the M of 
Figure 3.20 together with a graphical representation of them.



Figure 3.21: Euclidean distance matrix for the data in Fig. 3.16 and interpretation of manifold
in Fig. 3.16 as a connected graph with Euclidean distances as arc labels

M is interpretable as a connected graph G each of whose arcs from i to j is labelled with the 
Euclidean distance between Gi and Gj, as shown in Figure 3.21b; the distance between 

node 1 and node 2, for example, is given in the table as 0.30, between 1 and 6 as 0.51, and 
so on; only two arcs are explicitly labelled with distances in Figure 3.21b to avoid clutter.

A spanning tree for G is an acyclic subgraph of G which contains all the nodes in G and 
some subset of the arcs of G (Gross and Yellen 2006: 72ff.). A minimum spanning tree of G, 
as its name indicates, is a spanning tree which contains the minimum number of arcs 
required to connect all the nodes in G, or, if the arcs have weights, the smallest sum of 
weights (ibid.: 176ff.). The minimum spanning tree for G in Figure 3.17b is shown in Figure 
3.22, with the arcs comprising the tree emboldened.

Figure 3.22:Minimum spanning tree for the graph in Figure 3.21b

Such a minimum spanning tree can be used to approximate the geodesic distances between
all m row vectors of M in n-dimensional space using the Euclidean distances because the 
distance between any two nodes is guaranteed to be minimal. By summing the shortest 
paths between nodes, a table of graph distances between all data vectors can be 
constructed: the Euclidean and graph distances between M1 and M2 in Figure 3.22 are 
identical, but from M1 to M3 the graph distance is (M1 → M2) + (M2 → M3) rather than the 
Euclidean M1 → M3, from M1 to M4 the graph distance is is (M1 → M2) + (M2 → M3) + (M3
→ M4) rather than the Euclidean M1 → M4, and so on. The graph distance table and the 
Euclidean one from which it was derived in this way are shown in Tables 3.2 and 3.3.



Table 3.2: Euclidean distance matrix for M: Sum of all distances: 16.27; Mean distance: 0.39;
Distance M1 → M7: 0.46

Table 3.3: Graph distance matrix for M: Sum of all distances: 22.53; Mean distance: 0.54;
Distance M1 → M7: 1.32

As expected, the sum of distances and mean distance for the graph matrix are both 
substantially greater than for the Euclidean one, and the graph distance between M1 and M7
is three times larger than for the Euclidean, which Figure 3.22 confirms visually.

Figure 3.23 gives an example of the approach to geodesic distance approximation which is 
less tidy and contrived than the one just discussed: a version of the the so-called ‘Swiss roll’ 
often used in discussions of nonlinearity such as that of Lee and Verleysen (2007).



Figure 3.23: Euclidean and graph distance in an empirically derived data manifold. 

Mean Euclidean distance: 11.38; 

Mean geodesic distance: 41.91; 

Ratio mean geodesic / mean Euclidean: 3.68; 

Euclidean distance A → B: 18.66; 

Geodesic distance A → B: 191.73; 

Ratio geodesic / Euclidean A → B: 6.60

As before there is a disparity, reflected in the given ratios, between Euclidean and graph 
distances both in terms of means across the distances between all data vectors and 
between the sample vectors A and B; these ratios, particularly the one for the A to B 
distance, are readily confirmed visually.

In general, the graph approximation of geodesic distance is constrained to follow the shape 
of the manifold by the need to visit its nodes in the course of minimum spanning tree 
traversal. Intuitively, this corresponds to approximating the geodesic distance between any 
two cities on the surface of the Earth, say from New York to Beijing in Figure 3.19, by 
stopping off at intervening airports, say New York → London → Istanbul → Delhi → Beijing.

3.2.6 Geometrical interpretation of data

Data are a description of objects from a domain of interest in terms of a set of variables such
that each variable is assigned a value for each of the objects. We have seen that, given m 
objects described by n variables, a standard representation of data for computational 
analysis is a matrix M in which each of the m rows represents a different object, each of the 
n columns represents a different variable, and the value at Mij describes object i in terms of 

variable j, for i = 1. . .m, j = 1. . .n. The matrix thereby makes the link between the 
researcher’s conceptualization of the domain in terms of the semantics of the variables s/he 
has chosen and the actual state of the world, and allows the resulting data to be taken as a 
representation of the domain based on empirical observation.

Once data are represented as a matrix M, the foregoing geometrical concepts apply directly 
to it. Specifically:

• The dimensionality of M, that is, the number n of columns representing the n data 
variables, defines an n-dimensional data space.

• The sequence of n numbers comprising each row vector of M specifies the 
coordinates of the vector in the space, and the vector itself is a point at the specified 
coordinates; because the row vectors represent the objects in the research domain, 
each object has a specified location in the data space.

• The set of all data vectors in the space constitutes a manifold; the shape of the 
manifold is the shape of the data.



• Distance between the data vectors comprising themanifold can be measured linearly 
or nonlinearly.

The issue of whether the data manifold is linear or nonlinear will be prominent in the 
discussion to follow because it reflects a corresponding distinction in the characteristics of 
the natural process that the data describe. Linear processes have a constant proportionality 
between cause and effect. If kicking a ball is a linear system and kicking it x hard makes it go
y distance, then a 2x kick will make it go 2y distance, a 3x kick 3y distance and so on for nx 
and ny. Experience tells us that reality is not like this, however: air and rolling resistance 
become significant factors as the ball is kicked harder and harder, so that for a 5x kick it only
goes, say, 4.9y, for 6x 5.7y, and again so on until it bursts and goes hardly any distance at 
all. This is nonlinear behaviour: the breakdown of strict proportionality between cause and 
effect. Such nonlinear effects pervade the natural world, giving rise to a wide variety of 
complex and often unexpected, including chaotic, behaviours (Bertuglia and Vaio 2005). 
Depending on the choice of variables used to describe a nonlinear natural process, the data 
manifold may or may not capture the nonlinearity as curvature in its shape, and, if it does, 
the researcher must judge whether or not to take the nonlinearity into account during 
analysis.

Conceptualizing data as a manifold in n-dimensional space is fundamental to the discussion 
of clustering that follows for two main reasons. On the one hand, it becomes possible to 
visualize the degrees of similarity of data vectors, that is, the rows of a data matrix, as 
clusters in a geometrical space, thereby greatly enhancing intuitive understanding of 
structure in data. And, on the other, the degrees of similarity among data vectors can be 
quantified in terms of relative distance between them, and this quantification is the basis for 
most of the clustering methods presented later on.

3.3 Data transformation

Once a data matrix has been constructed, it can be transformed in a variety of ways prior to 
cluster analysis. In some cases such transformation is desirable in that it enhances the 
quality of the data and thereby of the analysis. In others the transformation is not only 
desirable but necessary to mitigate or eliminate characteristics in thematrix that would 
compromise the quality of the analysis or even render it valueless. The present section 
describes various types of transformation and the motivations for using them.

3.3.1 Variable scaling

The variables selected for a research project involving cluster analysis may require 
measurement on different scales. This is not an issue with respect to MDECTE because all 
its variables measure phonetic segment frequency and are thus on the same scale, but it is 
not difficult to think of cases in corpus-based linguistics where it can be. In sociolinguistics, 
for example, speakers might be described by a set of variables one of which represents the 
frequency of occurrence of some phonetic segment in interviews, another one speaker age, 
and a third income. Because these variables represent different kinds of thing in the world, 
they are measured in numerical units and ranges appropriate to them: phonetic frequency in 



the integer range, say, 1..1000, age in the integer range 20..100, and income in some 
currency in the real-valued range 0..50000. Humans understand that one can’t compare 
apples and oranges and, faced with different scales, use the variable semantics to interpret 
their values sensibly. But cluster analysis methods don’t have common sense. Given an 
m×n data matrix M in which the m rows represent the m objects to be clustered, the n 
columns represent the n variables, and the entry at Mi j (for i = 1. . .m, j = 1. . .n) represents 
a numerical measure of object i in terms of variable j, a clustering method has no idea what 
the values in the matrix mean and calculates the degrees of similarity between the row 
vectors purely on the basis of the relative numerical magnitudes of the variable values, as 
we shall see. As a consequence, variables whose scales permit relatively larger magnitudes 
can have a greater influence on the cluster analysis than those whose scales restrict them to
relatively small values, and this can compromise the reliability of the analysis, as has often 
been noted – cf., for example, Kaufman and Rousseeuw (1990: 4ff.); Gnanadesikan (1997: 
102ff.); Kettenring (2006); Tan, Steinbach, and Kumar (2006: 64f., 81); Gan, Ma, and Wu 
(2007: Ch. 4.1); Chu, Holliday, and Willett (2009); Xu and Wunsch (2009: 22); Hair et al. 
(2010: Ch. 8). This section first examines the nature of the problem, and then describes a 
resolution.

Table 3.4 shows three variants of a matrix that describes a dozen speakers in terms of three 
variables and, for each variant, a cluster analysis of the matrix rows; all the cluster trees 
were generated using squared Euclidean distance and Ward’s Method, but for present 
purposes any other combination of distance measure and clustering method chosen from 
among those described later on in the discussion would have done just as well.

In Table 3.4a the first variable represents the frequency of speakers’ usage of some phonetic
segment of interest, the second the age of the speakers in years, and the third speaker 
annual income in Euros. In 3.4b frequency and age are as in 3.4a but income is now 
expressed as the number of thousands of Euros (K), and 3.4c both retains the income scale 
of 3.4b and also expresses age in terms of days rather than years.



Table 3.4: Versions of a data matrix with different variable scales



Using the variable semantics, a human interpreter would see from direct inspection of the 
matrices that, irrespective of variation in scale, the descriptions of the speakers are in fact 
equivalent and that the speakers fall into three phonetic frequency groups, four age groups, 
and two income groups. That same interpreter would expect cluster analysis to use these 
groupings as the basis for a result that is consistent across all three matrices and 
independent of the variation in scaling, but it does not.

The trees in Table 3.4 differ substantially, and they cluster the speakers according to the 
relative magnitude of values in the matrix columns. The largest values in Table 3.4a are 
those in the Income column and the corresponding cluster tree divides the speakers into two
main groups, those with incomes in the range 30000–31250 and those with incomes in the 
range 35000–36250. In Table 3.4b the largest values are those in the Frequency column, 
and the corresponding cluster tree classifies the speakers into three main groups (100– 
115), (200–215), and (300–315) by frequency; and in Table 3.4c the Age column is the one 
with the largest values, and, predictably, the speakers are now divided into four main groups 
(7300–8030), (10950–11680), (14600–15330), and (18250–18980) by age.

That the result of cluster analysis should be contingent on the vagaries of scale selection is 
self-evidently unsatisfactory both in the present case and also more generally in research 
applications where variables are measured on different scales. Some way of eliminating 
scale as a factor in such applications is required; a way of doing this follows.

Relative to a data matrix M, a solution to the above problem is to standardize the variables 
by transforming the values in the column vectors of M in such a way that variation in scale 
among them is removed: if all the variables are measured on the same scale, none can 
dominate. The textbook method for doing this is via standard score, also known as z-score 
and autoscaling – cf., for example, Kaufman and Rousseeuw (1990: 6f.), Everitt and Dunn 
(2001: 51), Hair et al. (2010: Ch. 8), Kettenring (2006), Boslaugh and Watters (2008: 369f.), 
Chu, Holliday, and Willett (2009)) –, which transforms the original values in any column 
vector Mj into ones which say how many standard deviations those original values are from 

the vector mean; in what follows, this is referred to as ‘z-standardization’.

For the i'th value in any given vector x, the z-standardization is defined as

where

• μ(x) is the mean of the values in the vector. Given a variable x whose values are 
represented as a vector of n numerical values distributed across some range, the 
mean or average of those values is the value at the centre of the distribution. The 
values in Table 3.5 have been sorted by magnitude for ease of interpretation.



Table 3.5: An n = 10 dimensional vector x

Direct inspection suggests that the value at the centre of this distribution is around 10 or 12. 
A more precise indication is given by 

where μ is the conventional symbol for ‘mean’, Ʃ denotes summation, and n is the number of
values in x: the mean of a set of n values is their sum divided by n. In the case of Table 3.5 
this is (2+4+. . .+20 = 110)/10 = 11.

• δ(x) is the standard deviation. The mean hides important information about the 
distribution of values in a vector. Consider, for example, these two (fictitious) runs of 
student marks A and B on a percentage scale in Table 3.6:

Table 3.6: Two fictitious student mark vectors

The means in Table 3.6 are identical, but the variations across the mark scale differ 
strikingly: student A is capable of both failure and excellence, and student B is remarkably 
consistent. Knowing only the averages one could not make the distinction. Both the average 
and an indication of the spread of marks across the range are required in order to do proper 
justice to these students. Assessing the spread can be problematic in practice, however. 
Where the number of marks is few, as in the above example, visual inspection is sufficient, 
but what about longer runs? Visual inspection quickly fails; some quantitative measure that 
summarizes the spread of marks is required. That measure is variance.

Given a variable x whose values are represented as a vector of n values [x1,x2 . . . xn], 

variance is calculated as follows. 

◦ The mean of the values μ is (x1 + x2+. . .+xn) / n.

◦ The amount by which any given value xi differs from μ is then xi−μ.

◦ The average difference from μ across all values is therefore Σ i=1..n xi−μ / n.

◦ This average difference of variable values from their mean almost corresponds to
the definition of variance. One more step is necessary, and it is technical rather 
than conceptual. Because μ is an average, some of the variable values will be 
greater than μ and some will be less. Consequently, some of the differences 
(xi−μ) will be positive and some negative. When all the (xi−μ) are added up, as 

above, they will cancel each other out. To prevent this, the (xi−μ) are squared.



◦ The definition of variance for n values x = [x1,x2 . . . xn] is then

Thus, in Table 3.6, the variance for A is (40−58)2 + (30−58)2+. . .+ (30−58)2 / 10 = 594.44. 
Doing the same calculation for student B, the variance works out as 8.00. Comparing the two
variances, it is clear that the variability in A’s run of marks is much greater than B’s.

The variance of a set of values can be difficult to interpret because it is the average of the 
square of distances of the values from their mean. In the above example it is clear enough 
that 594.44 is much larger than 8, and that the amount of variability in the A distribution is 
therefore much larger than that of B. What if the variance of A is taken on its own without 
comparing it to any other variance, however? Relative to the values in A, how is one to 
interpret the observation that the variance is 594.44? Is that a large variance, or a small one,
or somewhere in between? It would be intuitively much clearer to express the variability in 
terms of the range of values in A. This is done by taking the square root of the variance:

where δ  is the standard deviation. The standard deviation of A is the square root of 594.44 =
24.38, which tells one that, on average, the marks for A vary by that amount, and by 2.83 for 
B, both of which are readily interpretable in terms of their respective runs of marks. 

The z-standardization of an arbitrary vector x is shown in Table 3.7.

Table 3.7: z-standardization of an arbitrary vector x

Figures 3.24a and 3.24b illustrate the result of z-standardization.



Figure 3.24: Plots of original and z-standardized vector x of Table 3.7

Application of z-standardization transforms any vector into one having a mean of 0 and a 
standard deviation of 1, and, because division by a constant is a linear operation, the shape 
of the distribution of the original values is preserved, as is shown by the pre- and post-
standardization plots in Figure 3.24. Only the scale changes: 0. . .331 for original x, and 
−0.7006. . . 2.9759 for transformed x.

When z-standardization is applied to each of the column vectors of a matrix, any variation in 
scale across those variables disappears because all the variables are now expressed in 
terms of the number of standard deviations from their respective means. Tables 3.8a–c 
show, for example, z-standardization of the matrices in Table 3.4.





Table 3.8: Comparison of matrices in Table 3.4 and their z-standardized versions

Despite the variation of scale in the matrices in the left-hand columns of Tables 3.8a–c, the 
z-standardized versions in the right-hand columns are identical. Cluster analysis of the rows 
of this standardized matrix, moreover, generates a tree, shown in Figure 3.25, that differs 
from any of those in Table 3.4; it was generated using squared Euclidean distance and 
Ward’s Method, as before, and this combination is used throughout the remainder of the 
discussion to maintain comparability among analyses.

Figure 3.25: Cluster analysis of the z-standardized matrix in Table 3.8

No one variable is dominant by virtue of the magnitudes of its values relative to the 
magnitudes of the others. Instead, all three variables play an equal part in determining the 
cluster structure, resulting in a symmetrical tree which reflects the symmetry of the 
standardized matrix’s row vectors in Table 3.8: vectors 1 and 12 are numerically identical but
with opposite signs, as are 2and 11, 3 and 10, and so on.

Application of z-standardization appears to be a good general solution to the problem of 
variation in scaling among data variables, and it is in fact widely used for that purpose. It is, 
however, arguable that, for cluster analysis, z-standardization should be used with caution or
not at all, again as others have observed (Chu, Holliday, and Willett 2009; Gnanandesikan, 
Tsao, and Kettenring 1995; Kettenring 2006; Milligan and Cooper 1988). The remainder of 
this section first presents the argument against z-standardization, then proposes an 
alternative standardization method, and finally assesses the alternative method relative to 
some others proposed in the literature.

The argument against z-standardization for cluster analysis depends on making a distinction 
between three properties of a variable:

• The absolute magnitude of values of a variable is the numerical size of its values, 
and can for present purposes be taken as the absolute maximum of those values. 
For Frequency in Table 3.8, for example, it is 315 on that criterion.



• The absolute magnitude of variability is the amount of variation in the values of a 
variable expressed in terms of the scale of those values, and is measured by the 
standard deviation; in Table 3.8 the absolute magnitude of variability of the non-z-
standardized Frequency column is 81.84.

• The intrinsic variability is the amount of variability in the values of a variable 
expressed independently of the scale of those values. This is measured in statistics 
by the coefficient of variation – see for example Boslaugh and Watters (2008: 62) –, 
which is defined with respect to a variable x as the ratio of x’s standard deviation to 
its mean:

The intuition gained from direct inspection of the matrices in Table 3.8 is that there is much 
more variability in the non-z-standardized values of the Frequency and Age columns than 
there is for those in the Income column regardless of the variation in their absolute 
magnitudes and absolute magnitudes of variability. The coefficient of variation captures this 
intuition: for Frequency it is 0.383, for Age almost as much at 0.311, and for Income much 
less at 0.141. Because the coefficient of variation is scale-independent it can be used as a 
general way of comparing the degrees of variability of variables measured on different 
scales. Tables 3.9 and 3.10 exemplify the interrelationship of these three properties via a 
sequence of two-dimensional matrices together with standard deviations and coefficients of 
variation of the column vectors and with cluster analyses of the row vectors; the subtables 
show a two-dimensional matrix with the standard deviations and coefficients of variation of 
its column vectors together with a cluster analysis of the row vectors, and the values of v1 

are altered in various ways in the sequence while those of  v2 are held constant.



Table 3.9: Interrelationship of absolute magnitude, absolute magnitude of variability, and
intrinsic variability



Table 3.10: Interrelationship of absolute magnitude of values, absolute magnitude of
variability, and intrinsic variability

In Table 3.9a there is no variability in the values of v1, the coefficient of variation and 
standard deviation are commensurately 0, and, even though the absolute magnitude of the 
values in v1 is much greater than that in v2, clustering is determined entirely by the variation 
in the values of v2: there are four primary clusters corresponding to the value-groups (100–
120), (200–220), (300–320), (400–420). In Table 3.9b the absolute magnitude of v1 is 
substantially increased but the increase is uniform so that there is still no variability and the 



standard deviation and coefficient of variation remain 0; the cluster analysis is again 
determined by the variability in v2 and is identical to the one in 3.9a. In Table 3.10a a 
relatively small amount of variability is introduced into the values of v1, which results in 
nonzero standard deviation and coefficient of variation, though both of these are smaller 
than those of v2; the cluster tree differs from the ones in Tables 3.9a and 3.9b in that the 
same four primary clusters remain, but the pattern of variability across rows 4–6 and 7–9 is 
now different from that in rows 1–3 and 10–12, and this is expressed in the internal 
structures of the corresponding clusters. Finally, the amount of variability in v1 is increased 
still further in 3.10b, and this is reflected in a higher standard deviation and coefficient of 
variation. For the first time, however, the standard deviation of v1 is greater than that of v2, 
and, even though the coefficient of variation is still smaller than that of v2, there are now 
three rather than the previous four primary clusters corresponding to the v1 value groups 
1000, 1200, and 1400. It is neither the absolute magnitude of values nor the intrinsic 
variability of a variable’s values that determine clustering, but their absolute magnitude of 
variability: the larger the standard deviation of a variable, the greater its effect on clustering.

How does this relate to the use of z-standardization of data for cluster analysis? It is a 
general property of every z-standardized vector, noted above, that its standard deviation is 1.
Application of z-standardization to multiple columns of a matrix therefore imposes a uniform 
absolute magnitude of variability on them. This is shown in Table 3.11; the coefficient of 
variation cannot be shown for the z-standardized variables on the right-hand side of 3.11 
because the formula for the coefficient of variation involves division by the mean and, for a z-
standardized vector, this is always 0.

Table 3.11: Unstandardized and z-standardized versions of a matrix



Because the absolute magnitude of variability determines the degree of a variable’s effect on
clustering, the implication is that all the column vectors in a z-standardized matrix have an 
equal influence; we have already seen an example of this above. This obviously eliminates 
any possibility of dominance by variables with relatively high absolute magnitudes of 
variability, but there is a price, and that price might be felt to be too high in any given 
research application. Intuitively, real-world objects can be distinguished from one another in 
proportion to the degree to which they differ: identical objects cannot be distinguished, 
objects that differ moderately from one another are moderately easy to distinguish, and so 
on. Data variables used to describe real-world objects to be clustered are therefore useful in 
proportion to the variability in their values: a variable with no variability says that the objects 
are identical with respect to the characteristic it describes and can therefore contribute 
nothing as a clustering criterion , a variable with moderate variability says that the 
corresponding objects are moderately distinguishable with respect to the associated 
characteristic and is therefore moderately useful as a clustering criterion , and again so on. 
Variables v1 and v2 in Table 3.11 have high intrinsic variabilities relative to v3 and are 
therefore more useful clustering criteria than v3; in fact, the variability of v3 is so small that it 
could be the result of random observational noise with respect to a characteristic that is 
constant across the objects to be clustered. To equate v3 with v1 and v2 in terms of its 
influence on clustering, as z-standardization does, cannot be right. Rescaling data values so 
that all variables have an identical absolute magnitude of variability diminishes the 
distinguishing power of high-variability variables and enhances the power of low-variability 
ones relative to what is warranted by observed reality. In other words, z-standardization can 
distort the validity of data as an accurate description of reality, and this is the reason why it 
should be used with caution or not at all in data preparation for cluster analysis.

For multivariate data whose variables are measured on different scales, what is required is a
standardization method that, like z-standardization, eliminates the distorting effect of 
disparity of variable scale on clustering but, unlike z-standardization, also preserves the 
relativities of size of the pre-standardization intrinsic variabilities in the post-standardization 
absolute magnitudes of variability. In other words, what is required is a method that 
generates standardized variable vectors such that the ratios of their absolute magnitudes of 
variability are identical to those of the intrinsic variabilities of the unstandardized ones. In this
way the standardized variables can influence the clustering in proportion to the real-world 
distinguishability of the objects they describe. Such a method follows.

The literature (Chu, Holliday, andWillett 2009; Gnanandesikan, Tsao, and Kettenring 1995; 
Milligan and Cooper 1988) contains a variety of alternatives to z-standardization, but, relative
to the desiderata just stated, one of them seems the obvious choice: mean-standardization, 
which was first proposed by (Anderberg 1973). This standardization involves division of the 
values of a numerical vector v by their mean μv:

The right-hand side of Table 3.12 shows the application of mean-standardization to the 
column vectors of the unstandardized matrix on the left.



Table 3.12: Unstandardized and mean-standardized versions of a matrix

Note that mean-standardization has preserved the coefficients of variation of the 
unstandardized variables. This is because division by a scalar – here the column vector 
mean – is a linear operation that alters the scale while preserving the shape of the original 
value distribution, as shown in Figure 3.26.

Figure 3.26: Preservation of distribution shape by linear transformation

Note also that the mean-standardized standard deviations of v1 − v3 in Table 3.12 are 
identical to the corresponding coefficients of variation. This is because, for any vector v, it is 
always the case that its coefficient of variation is identical to the standard deviation of the 
mean-standardized version of v.



Table 3.13 shows that for the coefficient of variation of v the standard deviation is calculated 
first and then multiplied by the inverse of the mean, and for the standard deviation of the 
mean-standardized version of v, v is first divided by its mean and the standard deviation of 
the result then calculated.

Table 3.13: Calculation of coefficient of variation and standard deviation of a vector v

But one of the properties of the standard deviation is that, for a vector v and a constant c, 
StdDev(cv) = cStdDev(v), or, in other words, the two are mathematically equivalent.

Since, therefore, (i) the coefficient of variation is a scale-independent measure of variability, 
and (ii) the standard deviation of a mean-standardized variable is always identical to the 
coefficient of variation of the unstandardized variable, and (iii) the standard deviation of a 
variable is what measures its absolute magnitude of variability, mean-standardization fulfils 
the above-stated requirements for a general standardization method: that it eliminate the 
distorting effect of disparity of variable scale on clustering while preserving the ratios of the 
intrinsic variabilities of the unstandardized variables in the ratios of the absolute magnitudes 
of variation of the standardized ones. The absolute magnitudes of variation of mean-
standardized variables are identical to the intrinsic variabilities of the unstandardized ones, 
and hence so are the ratios.

Figures 3.27a–3.27c compare the cluster trees for the unstandardized, z- standardized, and 
mean-standardized versions of the matrix in Table 3.12.

Figure 3.27: Cluster analyses of unstandardized, z-standardized, and mean-standardized
versions of the matrix in Table 3.12

Direct inspection of the unstandardized matrix in Figures 3.27a–3.27c reveals three value-
groups for v1, four groups for v2, and small random variations on a constant for v3. The 
primary clustering in Figure 3.27a is by v1 because it has the highest absolute magnitude of 
variability and subclustering within the three primary clusters is by v2, with the effect of v3 
invisible, all as expected. The cluster tree for the z-standardized matrix is much more 
complex, and any sense of the groups observable in v1 and v2 is lost as the clustering 
algorithm takes account of the numerically much-enhanced random variation in v3 generated



by z-standardization; the tree in Figure 3.27b bears no obvious relationship to any 
reasonable intuition about structure in the unstandardized matrix. The mean-standardized 
tree, however, captures these intuitions very well: there are four primary clusters 
corresponding to the four numerical groups in v2, which has the highest intrinsic variability 
and therefore represents the characteristic that most strongly distinguishes objects 1-12 from
one another in the real world; the effect of v2, the variable with the next-highest intrinsic 
variability, is seen in the internal structures of the primary clusters, so that, for example, the 
flat subtree for objects 1–3 corresponds to very similar row vectors in the unstandardized 
matrix, the segregation of 4 from 5 and 6 in the subtree corresponds to the anomalously-low 
value of 130 in row 4 of the unstandardized matrix, and similarly for the remaining two 
groups 7–9 and 10–12; the influence of v3, with its very low intrinsic variability, is invisible.

Most statistics, data processing, and cluster analysis textbooks say something about 
standardization. The z-standardization procedure is always mentioned and, when different 
methods are cited or proposed, there is typically little discussion of the relative merits of the 
alternatives, though, as noted earlier, quite a few express reservations about z-
standardization. The relatively few studies that are devoted specifically to the issue are 
empirical, that is, they assess various methods’ effectiveness in allowing clustering 
algorithms to recover clusters known a priori to exist in specific data sets, and their 
conclusions are inconsistent with one another and with the results of the present discussion. 
Milligan and Cooper (1988) compared eight methods and concluded that standardization 
using the range of the variables works best; Gnanandesikan, Tsao, and Kettenring (1995) 
proposed and favoured one that uses estimates of within-cluster and between-cluster 
variability, though also noted that “much more research is needed before one attempts to cull
out the best approaches”; Chu, Holliday, and Willett (2009) concluded that, for the data they 
used, “there is no consistent performance benefit that is likely to be obtained from the use of 
any particular standardization method”. For a principled comparison of the various 
standardization methods which demonstrates the superiority of mean-standardization, see 
Moisl (2010). In applications where preservation of the intrinsic variabilities of data variables 
is felt to be important for reliable cluster analysis, therefore, mean-standardization should be 
used.

3.2.2 Normalization

This section deals with a problem that arises when clustering is based on frequency data 
abstracted from multi-document corpora and there is substantial variation in the lengths of 
the documents. The discussion is in three main parts. It first shows why variation in 
document length can be a problem for frequency-based clustering, then goes on to describe 
a matrix transformation or ‘normalization’ designed to deal with the problem, and finally 
shows that such normalization is ineffective where documents are too short to provide 
reliable probability estimates for data variables. The 63 interviews that comprise the DECTE 
corpus differ substantially in length and so, consequently, do the phonetic transcriptions of 
them. Figure 3.28 shows the relative lengths of the transcriptions.



Figure 3.28: Lengths of the DECTE phonetic transcriptions in Kb

Most of the transcriptions in Figure 3.28, labelled B, are in the range ≈ 15−20 Kb, but a few 
(A) are substantially longer and a few (C) substantially shorter. The rows of the MDECTE 
abstracted from the transcriptions were cluster analyzed, and the result is shown in Figure 
3.29.



Figure 3.29: Cluster analysis of the MDECTE matrix

The labels (A)–(C) in Figure 3.29 correspond to those in Figure 3.24, and the 
correspondence exemplifies a general rule often observed in the data processing literature: 
that, for frequency data abstracted from multi-document corpora, variation in document 
length will affect clustering to greater or lesser degrees depending on the degree of 
variation. In the present case relatively long, relatively short, and intermediate-length 
transcriptions cluster irrespective of the phonetic usage of the speakers; as we shall see, 
elimination of interview length variation as a factor in the data yields a very different 
clustering result than the one in Figure 3.29.

The reason for this effect is easy to see. Whatever set of linguistic features one is counting, 
be they phonetic, phonological, morphological, lexical, syntactic, or semantic, it is in general 
probable that a longer document will contain more instances of those features than a shorter
one: a newspaper will, for example, contain many more instances of, say, the word ‘the’ than
an average-length email. If frequency profiles for varying-length documents are constructed, 
as here for the phonetic usage of the DECTE speakers, then the profiles for the longer 
documents will, in general, have relatively high values and those for the shorter documents 
relatively low ones. The preceding discussion of scaling has already observed that clustering



is strongly affected by the relative magnitudes of variable values. When, therefore, the rows 
of a frequency matrix are clustered, the profiles are grouped according to relative frequency 
magnitude, and the grouping will thus be strongly influenced by document length.

The solution to the problem of clustering in accordance with document length is to transform 
or ‘normalize’ the values in the data matrix in such a way as to mitigate or eliminate the 
effect of the variation. Normalization is accomplished by dividing the values in the matrix by 
some constant factor which reflects the terms in which the analyst wants to understand the 
data; a statistician, for example, might want to understand data variation in terms of standard
deviation, and so divides by that. In the present case the normalization factor is document 
length, so that the frequency values representing any given document are divided by its 
length or by the mean length of all the documents in the collection to which it belongs. Such 
normalization is an important issue in Information Retrieval because, without it, longer 
documents in general have a higher probability of retrieval than shorter ones relative toany 
given query.

The associated literature consequently contains various proposals for how such 
normalization should be done – for example Greengrass (2001: 20ff.), Singhal et al. (1996), 
Singhal, Buckley, and Mitra (1996), Spärck Jones, Walker, and Robertson (2000), Manning, 
Raghavan, and Schütze (2008: Ch. 6). These normalizations are judged in terms of their 
effectiveness for retrieval of relevant documents and exclusion of irrelevant ones rather than 
for cluster analysis, and the cluster analysis literature has little to say on the subject, so it is 
presently unclear what the best document length normalization method for cluster analysis 
might be among those currently in the literature, or indeed what the criteria for ‘best’ are.

Normalization by mean document length (Spärck Jones, Walker, and Robertson 2000) is 
used as the basis for discussion in what follows because of its intuitive simplicity. Mean 
document length normalization involves transformation of the row vectors of the data matrix 
in relation to the average length of documents in the corpus being used, and, in the present 
case, transformation of the row vectors of MDECTE in relation to the average length of the 
m = 63 DECTE phonetic transcriptions:

where Mi is the matrix row representing the frequency profile of i’th DECTE transcription Ti, 

length(Ti) is the total number of phonetic segments in Ti, and μ is the mean number of 

phonetic segments across all transcriptions T in DECTE:

The values in each row vector Mi are multiplied by the ratio of the mean number of segments

per transcription across the set of transcriptions T to the number of segments in transcription
Ti. The longer the document the numerically smaller the ratio, and vice versa; the effect is to 

decrease the values in the vectors that represent long documents, and increase them in 
vectors that represent short ones, relative to average document length.



MDECTEwas normalized by mean document length and then cluster analyzed using the 
same clustering method as for Figure 3.29, and the result is shown in Figure 3.30.

Figure 3.30: Cluster analysis of normalized MDECTE matrix

The tree in Figure 3.30 differs substantially from the one in 3.29. The constituents of cluster 
C have remained unchanged, but as subsequent discussion will show, there is good 
phonetic reason for this. Note, however, that the relatively long transcriptions comprising 
cluster A in Figure 3.29 have now been distributed among those in cluster B.

Caveat emptor, however. Mean document length normalization has eliminated variation in 
transcription length as a factor in clustering of the DECTE speakers. There is a limit to the 
effectiveness of normalization, however, and it has to do with the probabilities with which the 
linguistic features of interest occur in the corpus. Given a population E of n events, the 
empirical interpretation of probability (Milton and Arnold 2003: Ch. 1) says that the probability
p(ei) of ei ∈ E (for i = 1..n) is the ratio frequency(ei) / n, that is, the proportion of the number 

of times ei occurs relative to the total number of occurrences of events in E. A sample of E 



can be used to estimate p(ei), as is done with, for example, human populations in social 

surveys. The Law of Large Numbers (ibid.: 227f.) in probability theory says that, as sample 
size increases, so does the likelihood that the sample estimate of an event’s population 
probability is accurate: a small sample might give an accurate estimate but is less likely to do
so than a larger one, and for this reason larger samples are preferred.

Applying these observations to the present case, each of the constituent transcriptions of T 
is taken to be a sample of the population of all Tyneside speakers. The longer the 
transcription the more likely it is that its estimate of the population probabilities of the 156 
phonetic segment types in T will be accurate, and, conversely, the shorter the transcription 
the less likely this will be. It is consequently possible that a very short transcription will give 
very inaccurate probability estimates for the segment types. The normalization procedure will
then accentuate this inaccuracy, and this will in turn affect the validity of the clustering. The 
obvious solution to the problem of poor population probability estimation by short documents
or transcriptions is to determine which documents in the collection of interest are too short to
provide reasonably good estimates and to eliminate the corresponding rows from the data 
matrix. But how short is too short? The answer lies in statistical sampling theory; for further 
details see Moisl (2011).

3.2.3 Dimensionality reduction

The dimensionality of data is the number of variables used to describe the data objects: data
describing humans in terms of height and weight are two -dimensional, the weather in terms 
of temperature, atmospheric pressure, and wind speed are three-dimensional, and so on to 
any number of dimensions n.

Reducing the dimensionality of data as much as possible with as little loss of information as 
possible is a major issue in data analysis across a wide range of research disciplines (Lee 
and Verleysen 2007; Verleysen 2003), and it is so for cluster analysis as well. One frequently
cited and self-evidently important reason for this in the cluster analysis literature is that 
demand for computational resources is reduced by minimizing the number of variables 
included in the analysis (Kaufman and Rousseeuw 1990). Another is noise reduction: 
typically, not all variables included in an analysis are equally important in describing the 
objects in the research domain, and elimination of the less important ones removes random 
noise which can adversely affect the results (ibid.). There is, however, a third and rather 
deep reason for dimensionality reduction which has to do with the mathematical 
characteristics of high-dimensional spaces (Jimenez and Landgrebe 1998; Köppen 2000; 
Lee and Verleysen 2007; Verleysen 2003), and this is reviewed before going on to look at 
dimensionality reduction methods.

As will be seen, cluster analysis is based on measurement of proximity between and among 
data objects in n-dimensional space, and the discussion of data geometry has presented 
some proximity measures. For low-dimensional spaces, that is, for spaces where n = 2 and 
n = 3 which can be graphically represented, these measures are intuitively reasonable. In 
Figure 3.31, for example, the visual intuition is that the distance and angle between vector v 
and vector w are greater than the distance and angle between w and x, and quantitative 
measures like Euclidean distance and cosine confirm this intuition.



Figure 3.31: Relative proximities of vectors

The manifold for MDECTEconsists of 63 vectors in a 156-dimensional vector space; it 
cannot be shown as in Figure 3.31 because dimensionalities greater than 3 cannot be 
directly graphically represented, but the principle for distance and angle measurement 
between vectors is the same. Or rather, it appears to be the same. Research into the 
properties of high-dimensional spaces has shown that geometrical intuitions based on 
conventional low-dimensional spaces are unreliable with respect to higher-dimensional ones,
and that, as dimensionality grows, counterintuitive effects become ever more prominent 
(Bishop 2006; Jimenez and Landgrebe 1998; Köppen 2000; Lee and Verleysen 2007; 
Verleysen 2003). It was noted earlier that two and three dimensional spaces are a useful 
metaphor for conceptualizing higher dimensional spaces, but that they are no more than that
and can easily mislead. The limitations of the metaphor quickly become apparent when one 
tries to apply intuitions about physical space based on human experience of the world to 
higher-dimensional data space. Consider the concept of vector space size (Donoho 2000; 
Köppen 2000; Verleysen 2003). Figure 3.32 shows what happens to the size of a cube as 
dimensionality increases from 3 to 100, where size is measured in terms both of volume and 
of the length of the diagonal from the origin to the opposite corner.



Figure 3.32: Effect of dimensionality increase on the size of a cube

There are some highly counterintuitive effects here: in Figure 3.32a the length of the 
diagonal increases even though the volume remains constant; in Figure 3.32b the length of 
the diagonal increases even though the volume converges to 0; in Figure 3.32c and d the 
volume quickly starts to grow at a much greater rate than the length of the diagonal. The 
intuitive expectation based on experience of the three-dimensional physical world is that 
there should be proportionality between volume and diagonal length irrespective of the 
scaling of the data values, but that is not the case: rescaling of the data to axis lengths that 
are less than, equal to, or greater than 1 fundamentally alters their relationship. Volume is a 
human intuition based on experience of the physical world, and the mathematical formulation
of it captures the intuition for dimensionality 3. Beyond that dimensionality volume becomes 
intuitively meaningless, and the mathematical formulation of it reduces to the well known 
effects of multiplying values less than, equal to, or greater than 1 n times.

The following properties of high-dimensional spaces are of particular relevance for cluster 
analysis:



• For a fixed number of data vectors m and a uniform and fixed variable value scale, 
the manifold becomes increasingly sparse as their dimensionality n grows. To see 
this, assume some bivariate data in which both variables take values in the range 
0..9: the number of possible vectors like (0,9), (3,4), and so on is 10×10 = 100. For 
trivariate data using the same range the number of possible vectors like (0,9,2) and 
(3,4,7) is 10×10×10 =1000. In general, the number of possible vectors is rd, where r 

is the measurement range (here 0..9) and d the dimensionality. The rd function 
generates an extremely rapid increase in data space size with dimensionality: even a
modest d = 8 for a 0..9 range allows for 100,000,000 vectors.

This very rapid increase in data space size with dimensionality is widely known as 
the ‘curse of dimensionality’, discussed in, for example, Köppen (2000) and Lee and 
Verleysen (2007), and it is a problem in many areas of science and engineering. For 
cluster analysis it is a problem because, the higher the dimensionality, the more 
difficult it becomes to define the shape of the manifold sufficiently well to achieve 
reliable analytical results. Assume that we want to analyse, say, 24 speakers in terms
of their usage frequency of 2 linguistic variables; these features are assumed to be 
rare, so a range of 0..9 is sufficient. The ratio of actual to possible vectors in the 
space is 24/100 = 0.24, that is, the vectors occupy 24 percent of the data space. If 
one analyses the 24 speakers in terms of 3 phonetic segments, the ratio of actual to 
possible vectors is 24/1000 = 0.024 or 2.4 percent of the data space. In the 8- 
dimensional case it is 24/100000000, or 0.00000024 percent. A fixed number of 
vectors occupies proportionately less and less of the data space with increasing 
dimensionality. In other words, the data space becomes so sparsely inhabited by 
vectors that the shape of the manifold is increasingly poorly defined (Verleysen 
2003).

What about using more data? Let’s say that 24 percent occupancy of the data space 
is judged to be adequate for manifold resolution. To achieve that for the 3-
dimensional case one would need 240 vectors, 2400 for the 4-dimensional case, and
24,000,000 for the 8-dimensional one. This may or may not be possible. And what 
are the prospects for dimensionalities higher than 8?

• As dimensionality grows, the distances between pairs of vectors in the space 
become increasingly similar. In the relevant information retrieval and data mining 
literature, proximity between vectors in a space is articulated as the ‘nearest 
neighbour’ problem: given a set V of n-dimensional vectors and an n-dimensional 
vector w not in V, find the vector v in V that w is closest to in the vector space. This is 
an apparently straightforward problem easily soluble by, for example, calculating the 
Euclidean distance between w and each of the v in V, and selecting the shortest one.

As dimensionality increases, however, this straightforward approach becomes 
increasingly unreliable because “under certain broad conditions ... as dimensionality 
increases, the distance to the nearest neighbour approaches the distance to the 
farthest neighbour. In other words, the contrast in differences to different data points 
becomes nonexistent” (Beyer et al. 1999); on this see further: Aggarwal, Hinneburg, 
and Keim (2001), François, Wertz, and Verleysen (2007), Hinneburg, Aggarwal, and 
Keim (2000), Korn, Pagel, and Faloutsos (2001), and Steinbach, Ertöz, and Kumar 



(2004). This effect can, moreover, appear for dimensionalities as low as 10–15 
(Beyer et al. 1999).

To demonstrate this, a sequence of 1000 matrices, each with 100 rows containing 
random values in the range 0. . .1, was generated such that the first matrix had 
dimensionality k = 1, the second had dimensionality k = 2, and so on to 
dimensionality k =1000, as shown in Table 3.13.

Table 3.13: Fragments of matrices of increasing dimensionality

For each k a distance matrix containing the Euclidean distances between all possible
pairings of the 100 row vectors was calculated; a fragment of the distance matrix for 
k = 3, for example, is shown in Table 3.14.

Table 3.14: Euclidean distance matrix for one of the 1000 matrices of Table 3.13

The Euclidean distance between row vector 1 and itself is 0, between row vector 1 
and 2 is 0.686, and so on. For each of the 1000 distance matrices the maximum 
distance value maxk and the minimum distance value mink in the matrix were found 

and the ratio mink / maxk was calculated. The result is plotted in Figure 3.33.



Figure 3.33: Min / max ratios for a sequence of 1000 distance matrices for
dimensionality 1. . .1000

Figure 3.33 shows that, as dimensionality increases, (i) the ratio of minimum to 
maximum distance among vectors approaches 1, that is, they become increasingly 
similar, and (ii) the increase in similarity occurs very rapidly at relatively low 
dimensionality and then levels off. This means that it quickly becomes increasingly 
difficult to distinguish points from one another on the basis of distance. This 
phenomenon, where pairwise distances are the same for all points, is called 
‘concentration of distances’ and makes some of the concepts we take for granted in 
low dimensional spaces meaningless, such as ‘nearest neighbour’.

The implication for clustering is straightforward: because the most popular cluster 
analysis methods group vectors on the basis of their relative distances from one 
another in a vector space, as the distances between vectors in the space approach 
uniformity it becomes less and less possible to cluster them reliably.

One response to these characteristics of high-dimensional data is to use it as is and live with
the consequent unreliability. The other is to attempt to mitigate their effects by reducing the 
data dimensionality. The remainder of this section addresses the latter alternative by 
presenting a range of dimensionality reduction methods.

The foregoing discussion of data creation noted that variables selected for a research project
are essentially a first guess about how best to describe the domain of interest, and that the 
guess is not necessarily optimal. It may, therefore, be the case that the initial selection can 
be refined and, more specifically, that the number of variables can be reduced without losing 
too much relevant information. Given the importance of dimensionality reduction in data 
processing generally, there is an extensive literature on it and that literature proposes 
numerous reduction methods. The following account of these methods cannot be 
exhaustive. Instead, the aim is to provide an overview of the main approaches to the 
problem and a discussion of the methods that are most often used and / or seem to the 
author to be most intuitively accessible and effective for corpus linguists.

The methods for dimensionality reduction are of two broad types. One type selects a subset 
of the more important data variables and eliminates the remainder from the analysis, using 
some definition of importance. The other type abstracts a new and usually much smaller set 
of variables on the basis of the existing ones. In the relevant machine learning, artificial 
intelligence, and cognitive science literatures these approaches to dimensionality reduction 
are called ‘feature selection’ and ‘feature extraction’, but the present discussion has so far 
used the more generic term ‘variable’ for what these disciplines call features, and will 
continue to do so.

The dimensionality of data can be reduced by retaining variables which are important and 
eliminating those which are not, relative to some criterion of importance; for data in vector 
space format, this corresponds to eliminating the columns representing unimportant 
variables from the data matrix. The literature on variable selection is extensive – for 
summary accounts see Guyon and Elisseeff (2003), Kim, Street, and Menczer (2003), and 
Liu and Motada (2008) – but most of it is not directly relevant to cluster analysis. As 
subsequent discussion explains, there is a fundamental distinction between clustering, 
where the number and composition of clusters is inferred from data, and classification, 



where the number and characteristics of the clusters is prespecified and used to assign data 
items to the correct cluster. Almost all the variable selection literature is concerned with 
classification: given a set of variables, the various methods described in that literature work 
either by adding variables incrementally to a small seed selection or by deleting variables 
incrementally from the full set and observing the effect relative to an objective function which
evaluates the ‘goodness’ of the current variable selection in predicting cluster membership. 
In other words, variable selection methods for classification require prespecification of 
clusters to work. The present discussion is concerned only with clustering, however, and as 
such these classification-oriented methods can be disregarded; this section deals only with 
variable selection for clustering, on which see Devaney and Ram (1997), Dy (2008), Dy and 
Bodley (2004), Jain, Murty, and Flynn (1999), Kim, Street, and Menczer (2003), Liu and 
Motada (2008), Tan, Steinbach, and Kumar (2006), and Xu and Wunsch (2009).

The point of cluster analysis is to group objects in a domain of interest in terms of their 
relative degrees of similarity based on the variables used to describe them. Intuitively, a 
variable is useful for this purpose if it has the following characteristics: frequency, variability, 
and nonrandomness. We will first briefly discuss these three characteristics in general before
presenting ways of selecting variables for each.

• Frequency: In general, a variable should represent something which occurs often 
enough for it to make a significant contribution to understanding of the domain. For 
example, in the DECTE interviews the two most frequent phonetic segments occur 
12454 and 8255 times respectively out of a total of 157116 segment tokens across all
63 speakers, but 13 segments occur only once. The frequent segments are 
prominent features which any attempt to understand the phonetics of Tyneside 
speech must take into account, whereas the infrequent ones tell one little about 
Tyneside speech and may well be just noise resulting from speaker mispronunciation
or transcription error.

• Variability: The values which the variable takes should vary substantially. As the 
discussion of variable scaling has already noted, real-world objects can be 
distinguished from one another in proportion to the degree to which they differ: 
identical objects cannot be distinguished, objects that differ moderately from one 
another are moderately easy to distinguish, and so on. Data variables used to 
describe real-world objects are therefore useful for distinguishing the objects they 
describe in proportion to the variability in their values: a variable with no variability 
says that the objects are identical with respect to the characteristic it describes and 
can therefore contribute nothing to distinction of objects, a variable with moderate 
variability days that the corresponding objects are moderately distinguishable with 
respect to the associated characteristic and therefore moderately useful for the 
purpose, and again so on.

• Nonrandomness: The variation in the values which the variable takes should be 
nonrandom. Random variation of the aspect of the domain which the variable 
describes means that there is no systematic variation among objects, and all one can
say on this basis is that, in this respect, the objects differ, which is obvious from the 
outset. A variable is, therefore, useful for clustering to the extent that the values 
which it takes have a nonrandom distribution of variability among objects.



The remainder of this section presents ways of selecting variables for each of these criteria, 
then identifies associated problems, and finally proposes a way of resolving the problems.

Frequency

An m × n frequency matrix F is constructed in which the value at Fij is the number of times 

variable j (for j = 1. . . n) occurs in document i (for i = 1. . .m). The frequency of occurrence of
variable j across the whole corpus is given by

Frequencies for all the columns of F are calculated, sorted, and the less frequent variables 
are removed from F, thereby reducing the dimensionality of F. MDECTE is a frequency 
matrix, so the summation and sorting process can be applied directly; the result of doing so 
is shown in Figure 3.34.

Figure 3.34: Sorted MDECTE variable frequencies

Variability

The degree of variability in the values of a variable is described by its variance or, expressed
in the original units of measurement, its standard deviation. Given a data matrix in which the 
rows are the objects of interest and the columns are variables describing them, the 
application of variance to dimensionality reduction of a data matrix is again straightforward: 
sort the column vectors in descending magnitude of variance and use a plot of the values to 
decide on a suitable threshold k below which all columns are eliminated. Figure 3.35 shows 
this for MDECTE.



Figure 3.35: Sorted MDECTE variable variances

Note that, where variables are measured on different scales, conclusions about their relative 
variabilities based on the magnitudes of their variances can be misleading. The foregoing 
discussion of variable scaling made a distinction between absolute and intrinsic variability, 
where the first is the amount of variation in values expressed in terms of the scale on which 
those values are measured and the second is the amount of variation expressed 
independently of scale. Absolute magnitude of variability is measured by standard deviation, 
and comparison of the standard deviations of a set of variables therefore offers a scale-
dependent assessment of their variabilities. The discussion of variable scaling also showed 
why scale dependence can be misleading – essentially, because the magnitude of a 
variable’s standard deviation is strongly influenced by the magnitude of its values, so that, 
judged by its standard deviation, a variable with a relatively lower intrinsic variability but 
relatively larger values can appear to have greater variability than one with relatively higher 
intrinsic variability but relatively smaller values. For this reason, intrinsic variability as 
measured by the coefficient of variation, introduced earlier, should used as the criterion for 
variable selection where variables are measured on different scales. All the variables in 
MDECTE are measured on the same scale, segment frequency, and so this problem does 
not arise.

Nonrandomness

Two approaches to assessing nonrandomness in the distribution of variability are considered
here: Poisson distribution and term frequency – inverse document frequency.

A widely used measure of nonrandomness is the ratio of the variance of a set of values to 
their mean. To understand this measure it is first necessary to understand the Poisson 
distribution, a statistical model of randomness. This part of the discussion briefly introduces 
the Poisson distribution, then shows how the variance-to-mean ratio relates to it, and finally 
describes the application of the ratio to dimensionality reduction.

The Poisson distribution models the number of times that a random and rare event occurs in 
some specified spatial or temporal interval; see for example (Walpole et al. 2007: 161ff.). 



More specifically, it models data generated by physical stochastic processes, where a 
physical stochastic process is one that generates events randomly over some interval of 
time or space in a domain of interest – the fluctuation in share values on the stock market 
over a given week, for example. A Poisson process is a stochastic process in which (i) the 
random events occur independently of one another, and (ii) the probability of occurrence of 
the random events over some designated interval i is described by the probability density 
function p:

where:

– p is a probability.

– x is the variable in question.

– r is the number of events that occur over an interval i, and r! is r factorial.

– e is the base of the natural logarithm, that is, 2.71828.

– λ is the mean value of x over many intervals i.

For a Poisson process whose mean rate of occurrence of events λ over the designated 
interval i is known, therefore, this function gives the probability that some independently 
specified number r of events occurs over i. For example, assume that 7 cars pass through a 
rural intersection on Thursday, 3 on Friday, and 5 on Saturday; the mean number λ of cars 
passing through the intersection on a given day is 5. What is the probability that 4 cars will 
pass through on Sunday? The calculation is:

The Poisson distribution can be used to test whether the values in a given data variable are 
random or not: if there is a close fit between the data and the theoretical distribution, it is 
probable that the data was generated by a random process.

How can degrees of adherence to the Poisson distribution be determined with respect to a 
set of variable values? A characteristic of the theoretical Poisson distribution is that its mean 
and variance are identical. Given a frequency matrix whose columns represent the variables 
of interest, therefore, the degree to which any column j diverges from Poisson can be 
determined by calculating the degree to which j’s mean and variance differ. This ratio is 
known as the ‘variance-to-mean ratio’ (vmr) and is defined on a vector x by



Vmr is also known as the ‘index of dispersion’, which indicates its use as a measure of 
dispersion of some set of values relative to a statistical distribution. Relative to a Poisson 
distribution it measures degree of divergence from randomness.

The vmr can be used for dimensionality reduction as follows; a document collection D 
containing m documents is assumed. The production of a natural language document, and 
more specifically the successive occurrence of tokens of variables which constitutes the 
document, is taken to be a Poisson process. For each of the n variables xj describing the 

documents of D( j = 1. . .n) 

• The intervals of interest are the m component documents of D.

• The mean rate of occurrence λj of xj in the m documents is the total number of 

occurrences of xj in D divided by m.

• The actual number of occurrences of xj in document di (i = 1. . .m) is rij .

• The question being asked with respect to xj is: since the documents are taken to be 

generated by a Poisson process, and therefore that each document di is expected, 

on average, to contain λj tokens of xj, how probable is the actual number of 

occurrences rij in each of the di?

•  If the probability of xj is high across all the di, then it fits the Poisson distribution, that

is, the occurrence pattern of xj is random and it can therefore be eliminated as a 

variable. If, however, the probability of xj is low for one or more of the documents, 

then xj diverges from the distribution –in other words, xj occurs nonrandomly to a 

greater or lesser degree and should therefore be retained. In the ideal case the 
probability of xj is low for a proper subset of the documents in D and high elsewhere, 

indicating that its occurrence pattern is nonrandom in some documents and random 
in the remainder and that it is therefore a good criterion for document classification.

The assumption that any natural language document or document collection is generated by 
a stochastic process is, of course, unjustified (Kilgarriff 2005). Lexical sequencing in natural 
language text, for example, is not generated by the proverbial monkeys sitting at keyboards 
but by writers who carefully choose the words that express what they want to express and 
sequence those words in accordance with the rules of syntax, and speakers do not utter 
phonetic segments at random but rather follow the phonological rules of the language being 
spoken. It is, therefore, not to be expected that the distribution of any feature or features of 
natural language, lexical or otherwise, will have a true Poisson distribution. Empirical results 
have, however, shown that several categories of lexical type are almost-Poisson: ‘function’ 
words, ‘content’ words which occur very frequently across all documents in a collection, and 
content words that are very infrequent across a collection. The relative degree of adherence 
to the Poisson distribution can, therefore, still be used as a dimensionality reduction criterion 
– some words are more random than others, and the aim is to identify the relatively non-
random ones. Much the same applies to non-lexical variables such as the phonetic 
segments on which the MDECTE data matrix is based: degree of adherence to the Poisson 
distribution can be used to identify segments that are relatively more nonrandom than 



others, and should therefore be retained. Because the Poisson is not an ideal model for 
lexical type distribution in natural language text, exact correspondence cannot in general be 
expected, but the relative degree of divergence from mean-variance equivalence can 
nevertheless be used to distinguish variables on a continuum of randomness, ranging from 
those that are near-Poisson and can therefore be eliminated to those that are far from 
Poisson and should therefore be retained.

The vmr values for the column vectors of MDECTEwere calculated, sorted in descending 
order of magnitude, and plotted as shown in Figure 3.36. A threshold k  is, again, selected 
and the variables which fall below the thresholdare eliminated.

Figure 3.36: Sorted MDECTE variable vmr scores

The other approach to assessing nonrandomness is term frequency – inverse document 
frequency (tf−idf), which was developed by Spärck Jones (1972) and is extensively used by 
the Information Retrieval community – cf., for example, Manning, Raghavan, and Schütze 
(2008: Ch. 6). It focuses on the distribution of lexical items in document collections, but is 
readily adaptable to variables of other types.

Spärck Jones (1972) proposed what was to become a standard principle in Information 
Retrieval: that a lexical type’s usefulness for differentiating documents is determined not by 
its absolute frequency across a collection, but by the pattern of variation in its frequency 
across the documents. To gain an intuition for this, assume a collection of documents related
to the computer industry. At one end of the range are very low frequency words that, as 
expected, are of little or no use for document differentiation: a word like ‘coffee’ that occurs a
few times in one or two documents that caution against spills into keyboards is insignificant 
in relation to the semantic content of the collection as a whole, and a word like ‘bicycle’ that 
occurs only once tells us only that the document in which it appears is unique on that 
criterion. At the other end of the range, a word like ‘computer’ and its morphological variants 
is likely to be both very frequent across the collection and to occur in most if not all the 
documents, and as such is also a poor criterion for differentiating documents despite its high 
absolute frequency: if all the documents are about computers, being about computers is not 
a useful distinguishing criterion.



In short, word frequency on its own is not a reliable clustering criterion. The most useful 
words are those whose occurrences are, on the one hand, relatively frequent, and on the 
other are not, like ‘computer’, more or less randomly spread across all collection documents 
but rather occur in clumps such that a relatively few documents contain most or all the 
occurrences and the rest of the collection few or none; the word ‘debug’, for example, can be
expected to occur frequently in documents that are primarily about computer programming 
and compiler design, but only infrequently if at all in those about, say, word processing. On 
this criterion, the usefulness of lexical types is assessed in accordance with their 
‘clumpiness’ of occurrence across documents in a collection.

When she proposed clumpiness of distribution as a criterion, Spärck Jones also provided a 
method for calculating it. That method, together with some emendments to it made by 
(Robertson 1972), became known as ‘inverse document frequency’ (idf). Relative to a lexical
variable or ‘term’ tj in a set T of n terms that occur across all the documents di in a collection 

D of m documents (for i = 1. . .m and j = 1. . .n), idf is defined as

where dfj is the document frequency, that is, the number of documents belonging to D in 

which tj occurs. The inverse document frequency of a term, therefore, is the ratio of the total 

number of documents in a collection to the number of documents in which the term occurs; 
log2 is not conceptually partof idf , but merely scales the m / dfj ratio to a convenient interval.

There is a problem with idf : it says that terms which occur only once in a corpus are the 
most important for document classification. Assuming a 1000-document collection, the idf of 
a term that occurs in one document is log2(1000 / 1) = 9.97, for a term that occurs in two 

documents log2(1000 / 2) = 8.97 and so on in a decreasing sequence. This is 

counterintuitive – does one really want to agree with idf that a lexical type which occurs once
in a single document is a better criterion for document classification than one which occurs 
numerous times in a small subset of documents in the collection? It also contradicts the 
empirically-based and widely used principle (Luhn 1957) that medium-frequency words are 
the best discriminatory criteria, as well as standard practice in Information Retrieval of 
disregarding frequency-1 words. In short, idf cannot be right. It was rescued by building word
frequency into the clumpiness measure, as in

where tf(tj) is the frequency of term tj across all documents in D. Using this formulation, the 

tf−idf of some lexical type A that occurs once in a single document is 1×log2(1000 / 1) =9.97,

and the tf−idf of a type B that occurs 400 times across 3 documents is 400×log2(1000 / 3) = 

3352.3, that is, B is far more useful for document differentiation than A, which is more 
intuitively satisfying than the alternative (Robertson 2004; Spärck Jones 2004).



The notion of clumpiness in the distribution of lexical items across document collections 
extends naturally to other types of variables such as the MDECTE phonetic segments. Its 
application to dimensionality reduction is analogous to that of the methods already 
presented: the columns of the data matrix are sorted in descending order of tf−idf 
magnitude, the tf−idf values are plotted, the plot is used to select a suitable threshold k, and 
all the columns below that threshold are eliminated. The plot for MDECTE is given in Figure 
3.37.

Figure 3.37: Sorted MDECTE variable tf−idf scores

Though tf−idf has been and is extensively and successfully used in Information Retrieval, it 
has a characteristic which compromises its utility for dimensionality reduction. Because 
clumpiness in tf−idf relative to some variable v is based on the ratio of the total number of 
documents m in a collection to the number of documents df in which v occurs, as df 
approaches m the ratio approaches 1 and the idf correspondingly approaches log2(1) = 0. 

Where the idf is near 0 the tf−idf of v is very small, and when it is at 0 – that is, where v 
occurs in every document – the tf−idf remains 0 irrespective of v’s frequency. It is, however, 
possible that v is nonrandomly distributed across the documents even where it occurs in 
every document – some documents might, for example, contain only one or two tokens of v, 
while others might contain scores or hundreds – and tf−idf cannot identify such a distribution.
Use of tf−idf for dimensionality reduction therefore runs the risk of eliminating distributionally-
important variables on account of the definition of clumpiness on which it is based. A small 
change to the formulation of tf−idf prevents the idf term evaluating to zero and this allows 
relative frequency to remain a factor, as shown in

Since (m+1) must always be greater than df the idf and consequently the tf−idf are always 
greater than 0.



All the methods for dimensionality reduction presented so far, from frequency through to 
tf−idf, suffer two general problems. The first is that selection of a threshold k below which 
variables are discarded is problematic. Visual intuition based on plotting indicates that, the 
further to the left of the plot one goes, the more important the variable. But where, exactly, 
should the threshold be drawn? In Figure 3.37, for example, the variables to the right of the 
110th or so can clearly be eliminated because they are at or near zero, but can the threshold
be set further to the left without too much loss of information? Should it be set at, say, 80? Or
40? Or 25? And why? Unless one is able to give a principled reply, threshold selection is a 
subjective matter that runs the risk, on the one hand, of eliminating too few variables and 
thereby retaining excessive dimensionality, or on the other of eliminating too many and 
potentially compromising the analysis by disregarding relevant information.

The second problem is incommensurateness. The selection criteria focus on different 
aspects of data, and as such there is no guarantee that, relative to a given data matrix, they 
will select identical subsets of variables. Indeed, the expectation is that they will not: a 
variable can have high frequency but little or no variability, and even if it does have 
significant variability, that variability might or might not be distributed nonrandomly across the
matrix rows. This expectation is fulfilled by MDECTE, as shown in Figure 3.38.



Figure 3.38: Comparisons of sorted MDECTE variable frequency, variance, vmr and tf−idf
scores

Each of the rows (a)–(d) of Figure 3.38 is based on a different sorting of the MDECTE matrix
columns: 3.38a is based on the columns sorted in descending order of frequency, 3.38b of 
variance, 3.38c of vmr, and 3.38d of tf−idf. For each, vectors of column frequencies, 
variances, vmrs, and tf−idfs were calculated, z-standardized for comparability, and then co-
plotted. Interpretation proceeds as follows. The frequency values of Figure 3.38a, shown as 
circles, decline smoothly and gradually from the high-frequency to the low-frequency 
columns of MDECTE because the columns were sorted by descending frequency, and the 
corresponding variance, vmr, and tf−idf values scatter around the frequency curve with no 
obvious pattern except for a general diminution as the frequencies approach zero. When a 
threshold k based on the shape of the frequency curve is selected, all the variable columns 
to the left of k in the plot are retained and all those to the right are discarded; for k = 60, say, 
some high-variance, high-vmr, and high-tf−idf variables are retained along with the high-
frequency ones, but so are quite a few relatively low-variance, low-vmr, and low-tf−idf ones, 
and quite a few relatively high-variance, high-vmr, high-tf−idf ones are eliminated along with 
low-frequency ones. This pattern is repeated for Figures 3.38b–3.38d.



Given that the four variable selection criteria in the foregoing discussion can be expected to, 
and for MDECTE do, select different subsets of variables, which of them is to be preferred 
or, alternatively, how can their selections be reconciled?

With respect to threshold selection, the literature appears to contain no principled resolution, 
and none is offered here; selection of a suitable threshold remains at the discretion of the 
researcher. The remainder of this discussion deals with the problem of 
incommensurateness.

In any given research application there might be some project-specific reason to prefer one 
or another of the four variable selection criteria. Failing this, there is no obvious way of 
choosing among them. The alternative is to attempt to reconcile them. The reconciliation 
proposed here attempts to identify and eliminate the variables which fail to satisfy the 
principles of frequency, variability, and nonrandomness set out at the start of the discussion. 
This can be done by calculating frequency, variance, vmr, and tf−idf values for each column 
of the data matrix, sorting each set of values in descending order of magnitude, z-
standardizing for comparability, and then co-plotting. For MDECTE this amounts to co-
plotting the frequency, variance, vmr, and tf−idf curves from Figure 3.38, as shown in Figure 
3.39.

Figure 3.39: Co-plot of sorted MDECTE variable f requency, variance, vmr and tf−idf scores

The variables with high-frequency, high-variance, and high-nonrandomness values are on 
the left of the plot, and these values diminish smoothly as one moves to the right. If a 
threshold is now selected, the variables to the right of it can be discarded and those to the 
left retained, yielding the required dimensionality reduction; as before, threshold selection is 
subjective, and in Figure 3.39 it could reasonably be anywhere between 20 and 80, though a
conservative threshold of 80 has been selected. There is, of course, no guarantee that the 
frequency, variance, vmr, and tf−idf distributions will agree as neatly as this in every 
application, but where they do this approach to reconciliation is effective.



It is, moreover, possible to further reduce dimensionality by refining the selection to the left of
the threshold. This refinement is based on tabulation of the retained variables, as shown for 
MDECTE in Table 3.15, where the numbers in the columns of DECTE PDV codes, as 
described earlier.

Table 3.15: Categorization of variables retained in Figure 3.39

Table 3.15 categorizes the retained variables according to how many of the methods 
selected them: the variables in column 1 were selected by all four, those in column 2 by all 
but tf−idf, and so on; other combinations of selection method are of course possible, but only
those that actually occurred for MDECTE are listed. Refinement of the selection using this 
categorization proceeds as follows. Because the variables in column 1 were selected by all 
four methods, they are high-frequency, high-variance, and highly-nonrandom, and are thus 
kept because they satisfy all the retention criteria. Much the same can be said of the 
variables in column 2, though slightly less confidently because tf−idf did not select them, and
a decision on retention is therefore determined by whether or not one trusts vmr over tf−idf. 



The variables in the remaining columns can be discarded because they are not useful for 
clustering relative to the retention criteria.

• Column 3 contains high-frequency, high-variance variables, but the variance is near-
randomly distributed.

• Column 4 contains variables whose values are nonrandomly distributed, but they are 
low-frequency and low-variance.

• Column 5 contains a high-frequency variable with little variance, and such variance 
as it has is near-random.

• Column 6 contains a low-frequency, low-variance variable whose values, on one 
measure, are nonrandomly distributed.

• Column 7 contains quite a large number of low-frequency, low-variance variables 
whose values on the tf−idf measure are nonrandomly distributed.

The initial selection based on the threshold in Figure 3.39 comprised the 131 variables listed 
in Table 3.15. Retaining columns 1 and 2 of Table 3.15 reduces the selection to 51, which is 
a very substantial dimensionality reduction from the original 156. Other approaches to 
feature selection for clustering are in Devaney and Ram (1997), Dy (2008), Dy and Bodley 
(2004), Kim, Street, and Menczer (2003), and Roth and Lange (2004).

Finally, the various dimensionality reduction methods described thus far are general in the 
sense that they are applicable to any data matrix in which the rows represent objects to be 
clustered and the columns the variables describing those objects.Where the variables are 
lexical, however, there is additional scope for dimensionality reduction via stemming and 
elimination of so-called stop-words. This is a substantial topic in its own right, and is not 
discussed here; for further information see for example Frakes and Baeza-Yates (1992), Hull
(1996), Xu and Croft (1998), and Ziviani and Ribeiro-Neto (1999).

As noted, the methods for dimensionality reduction are of two broad types. One type selects 
a subset of the more important data variables and eliminates the remainder from the 
analysis, using some definition of importance. The other type abstracts a new and usually 
much smaller set of variables on the basis of the existing ones. The preceding discussion 
has dealt with the first of these; the remainder of this section moves to the second, variable 
extraction.

The discussion of data creation noted that, because selection of variables is at the discretion
of the researcher, it is possible that the selection in any given application will be suboptimal 
in the sense that there is redundancy among them, that is, that they overlap with one 
another to greater or lesser degrees in terms of what they represent in the research domain. 
Where there is such redundancy, dimensionality reduction can be achieved by eliminating 
the repetition of information which redundancy implies, and more specifically by replacing 
the researcher-selected variables with a smaller number of non-redundant variables that 
describe the domain as well as, or almost as well as, the originals. Slightly more formally, 
given an n-dimensional data matrix, dimensionality reduction by variable extraction assumes
that the data can be described, with tolerable loss of information, by a manifold in a vector 



space whose dimensionality is lower than that of the data, and proposes ways of identifying 
that manifold.

For example, data for a study of student performance at university might include variables 
like personality type, degree of motivation, score on intelligence tests, scholastic record, 
family background, class, ethnicity, age, and health. For some of these there is self-evident 
redundancy: between personality type and motivation, say, or between scholastic record and
family background, where support for learning at home is reflected in performance in school. 
For others the redundancy is less obvious or controversial, as between class, ethnicity, and 
score on intelligence tests. Variable extraction methods look for evidence of such 
redundancy between and among variables and use it to derive new variables which give a 
non-redundant, reduced-dimensionality representation of the domain. In the foregoing 
example, the researcher-defined variables personality type, motivation, scholastic record, 
and score on intelligence tests might be replaced by a ‘general intelligence’ variable based 
on similarity of variability among these variables in the data, and family background, class, 
ethnicity, age, and health with a ‘social profile’ one, thereby reducing data dimensionality 
from nine to two.

The following discussion of variable extraction first gives a precise definition of redundancy, 
then introduces the concept of intrinsic dimension, and finally presents some variable 
extraction methods.

If there is little or no redundancy in variables then there is little or no point to variable 
extraction. The first step must, therefore, be to determine the level of redundancy in the data 
of interest to see whether variable extraction is worth undertaking. The methods for doing 
this described below are all based on assessing the degrees of overlap between data 
variables in terms of the information about the domain that they represent, and they do this 
by measuring the similarity between and among the column vectors of the data matrix which 
represent the variables.

We have seen that the values in an n-dimensional vector are the coordinates of its location 
in n-dimensional space. The similarity of values in any two vectors in the space will 
consequently be reflected in the distance between them: vectors with very similar values will 
be close together, and to the extent that the differences in values increase they will be 
further apart. By calculating the distances between all unique pairings of column vectors in a 
data matrix, it is possible to identify degrees of similarity and therefore of redundancy 
between them. The Euclidean distances between all unique pairings of the 156 column 
vectors of MDECTE in 63-dimensional space were calculated, sorted in descending order of 
magnitude, and plotted in Figure 3.40; ‘unique’ means that all (v,w) pairs included in the 
calculation were different, (v,w) and (w,v) were regarded as identical because distance 
between two points is symmetrical, and (v,v), that is, distances of vectors to themselves, 
being always 0, were disregarded.



Figure 3.40: Sorted distances between pairs of column vectors in MDECTE

Figure 3.40 shows the shape of the redundancy in MDECTE. There is substantial variation in
degree of redundancy between variables from relatively low on the left, where the column 
vectors are relatively far apart, to relatively high on the right where the vectors are relatively 
close together. The large number of relatively high-redundancy variable pairs from about 
1000 rightwards indicates substantial scope for dimensionality reduction by variable 
extraction.

Another way of measuring redundancy is via the angle between them. The angle between a 
pair of vectors in a vector space reflects the distance between them, as discussed earlier, 
and degrees of similarity and therefore of redundancy between all unique pairings of column 
vectors of a data matrix can be found by calculating the cosines of the angles between them.
The cosines between all unique pairings of the 156 column vectors of MDECTE were 
calculated, sorted in ascending order of magnitude, and plotted in Figure 3.41.



Figure 3.41: Sorted cosines between pairs of column vectors in MDECTE

The smaller the cosine the larger the distance between variables and thus the smaller the 
redundancy. There are relatively few non-redundant variable pairs at the left of the plot, but 
redundancy increases quite rapidly thereafter; as with distance, the indication is that there is 
substantial scope for dimensionality reduction by variable extraction.

Angle has an advantage over distance as an indicator of degree of redundancy. The 
magnitude of distances measured between vectors is determined by the scale on which the 
variables are measured, and as such it is difficult to know how to interpret a given distance in
terms of degree of redundancy: does a distance of, say, 50 represent a lot of redundancy or 
only a little? A given distance is diagnostically useful only in relation to other distances, as in 
Figure 3.40. Angle, on the other hand, is independent of the scale on which variables are 
measured in that an angle between vectors does not change with vector length. The cosine 
measure has an absolute interval of 0. . .1, and in relation to that interval it is possible to say 
that a given cosine value, say 0.2, is relatively small and indicates relatively low redundancy,
and a value of 0.9 is relatively large and indicates relatively large redundancy.

A third and frequently used way of measuring redundancy is correlation. In probability theory 
two events A and B are said to be independent if the occurrence of A has no effect on the 
probability of B occurring, or vice versa, and dependent otherwise. Given two variables x 
and y and an ordered sequence of n observations at times t1, t2 . . . tn for each, if the 

measured value for x at time ti (for i = 1. . . n) has no predictive effect on what the measured 

value for y at ti will be, then those variables are independent, or, failing this condition, 

dependent. In statistics, variables that are dependent are said to be associated, and the 
degree of association is the degree to which they depart from independence. Statistics 
provides various measures of association, the most often used of which, Pearson’s product-
moment correlation coefficient, or ‘Pearson’s correlation coefficient’ for short, is described 
below.

To understand Pearson’s correlation coefficient, one first has to understand the concept of 
covariance between any two variables x and y, which is a measure of the degree to which 
there is a linear relationship between the values taken at successive observations in the time
sequence t1, t2 . . . tn: as the observed values of x change in the sequence, do the values of

y at each corresponding observation change in a constant proportion? Figure 3.42 gives 
some examples.





Figure 3.42: Examples of covariance between two variables

The covariance between two variables cov(x,y) is a quantitative measure of the degree of 
linear relationship between them:

where where μx and μy are the means of x and y respectively, n is the number of 
observations in x and y, and the (xi −μx)(yi −μy) expression is the inner product of vectors x 
and y adjusted by subtracting their respective means. Using this formula, the covariances of 
the variables in Figure 3.42 are given in Table 3.16.

Table 3.16: Covariances of variables in Figure 3.42

This result is puzzling. If the variables in Figure 3.42a are most linearly related, those in 
3.42c least, and those in 3.42b in between, one expects the numerical measure to reflect 
this, but it does not. The reason is that the magnitude of the covariance is dependent on the 
numerical magnitudes in the vectors, and the magnitudes in 3.42b are sufficiently larger than
those in 3.42a to override the greater linearity in 3.42a. The solution is to standardize the 
vectors to a common scale, and this is what Pearson’s correlation coefficient, given as Pcorr
does.



Pcorr divides x and y by their respective standard deviations, thereby transforming their 
values to a common scale and so eliminating the effect of scale. This is shown in Table 3.17.

Table 3.17: Comparison of covariances and Pearson correlations of variables in 3.16

Like angle, the Pearson coefficient has the advantage that it is independent of variable scale
and can be interpreted in relation to a fixed −1. . .1 interval. This interpretability can be 

enhanced by squaring the correlation value, which yields r2, the coefficient of determination; 
r2 represents the proportion of variance that two vectors share and, expressed as a 
percentage, gives an intuitively clearer impression than the correlation coefficient of the 
relationship between two vectors. For example, a correlation of 0.9 looks very strong, but an 

r2 of 0.81 or 81 percent slightly less so; a correlation of 0.7 still looks reasonably strong but 
corresponds to an r2 of only 0.49 or 49 percent of variance shared by the vectors; a 
correlation of 0.6, which one might regard as moderate, corresponds to only 36 percent 
shared variance. In other words, the coefficient of determination provides an intuitive 
correction to over-interpretation of the correlation coefficient.

Figure 3.43 co-plots the Pearson correlation coefficients and coefficients of determination of 
all unique pairings of column vectors of MDECTE; in the former case absolute values of 
negative correlations were used since, for present purposes, all that matters is degree of 
redundancy and not its direction. Like distance and angle, this criterion reveals a significant 
amount of redundancy and thus scope for dimensionality reduction by variable extraction.



Figure 3.43: Correlation coefficients and coefficients of determination of the column vectors
of MDECTE

The theoretical basis for variable extraction is the concept of intrinsic dimension. We have 
seen that an m × n matrix defines a manifold in n-dimensional space. In such a space, it is 
possible to have manifolds whose shape can be described in k dimensions, where k < n. 
Figure 3.44a shows, for example, a three dimensional matrix and the corresponding plot in 
three dimensional space.



Figure 3.44: A line in 3, 2, and 1 dimensional spaces

The data in Figure 3.40a describe a straight line in three dimensional space. That line can 
also be described in two dimensions, as in Figure 3.44b, and in fact can be described in only
one dimension, its length 10.69, that is, by its distance from 0 on the real-number line, as in 
3.44c. In general, a straight line can be described in one dimension, two dimensions, three 
dimensions, or any number of dimensions one likes. Essentially, though, it is a one-
dimensional object; its intrinsic dimension is 1. In other words, the minimum number of 
dimensions required to describe a line is 1; higher-dimensional descriptions are possible but 
unnecessary.

Another example is a plane in three-dimensional space, shown in Figure 3.45a.



Figure 3.45: A plane in 3 and 2 dimensional spaces

This plane can be redescribed in two-dimensional space, as in Figure 3.45b, and again in 
any number of dimensions one likes. Clearly, however, it cannot be described in one 
dimension; the intrinsic dimension of a plane is 2. Similarly, the intrinsic dimension of a cube 
is 3, in that the minimum dimensionality data set that can describe it is the three x, y and z 
coordinates of the points that comprise it. A cube can of course, exist not only in three 
dimensional space but also in four, ten, twenty, and n-dimensional spaces, in which case it 
would be a k dimensional manifold of intrinsic dimension k = 3 embedded in n-dimensional 
space, where k < n and n is the embedding dimensionality.

The concept of intrinsic dimension is straightforwardly relevant to dimensionality reduction. 
The informational content of data is conceptualized as a k-dimensional manifold in the n-
dimensional space defined by the data variables. Where k = n, that is, where the intrinsic 
dimension of the data corresponds to the number of data variables, no dimensionality 
reduction is possible without significant loss of information. Where, however, there is 
redundancy between and among variables in a data matrix, it is possible to represent this 
information using a smaller number of variables, thus reducing the dimensionality of the 
data. In such a case, the aim of dimensionality reduction of data is to discover its intrinsic 
dimensionality k, for k < n, and to redescribe its informational content in terms of those k 
dimensions.



Unfortunately, it is not usually obvious what the intrinsic dimension of given data is, and 
there is currently no known general solution for finding k; reviews of existing methods are 
found in Lee and Verleysen (2007) and Martinez, Martinez, and Solka (2011: Ch. 2.7). 
Existing dimensionality reduction methods require the researcher to approximate k using a 
variety of criteria; the remainder of this section describes the main linear and nonlinear 
methods. For discussion of intrinsic dimension see Jain and Dubes (1988: Ch. 2.6), 
Camastra (2003), Verleysen (2003), Lee and Verleysen (2007: Ch. 3).

This account of variable extraction methods first presents the standard method, linear 
principal component analysis (PCA), and then goes on to survey a range of other methods.

Principal Component Analysis

Because real-world objects can be distinguished from one another by the degree to which 
they differ, the data variables used to describe those objects are useful for clustering in 
proportion to how well they describe that variability, as already noted. In reducing 
dimensionality, therefore, a reasonable strategy is to attempt to preserve variability, and that 
means retaining as much of the variance of the original data in the reduced-dimensionality 
representation as possible. Redundancy, on the other hand, is just repeated variance, and it 
can be eliminated from data without loss of information. PCA reduces dimensionality by 
eliminating the covariance while preserving most of the variance in data. Because it is the 
standard dimensionality reduction method, PCA is described in greater or lesser degrees of 
detail and clarity by most publications in the field. The standard reference works are those of
Jolliffe (2002) and Jackson (2003); selected briefer accounts are in Bishop (1995: 310ff.), 
Everitt and Dunn (2001: 48ff.), Tabachnick and Fidell (2007: Ch. 13), and Izenman (2008: 
Ch. 7).

Given an n-dimensional data matrix containing some degree of redundancy, linear PCA 
replaces the n variables with a smaller set of k uncorrelated variables called principal 
components which retain most of the variance in the original variables, thereby reducing the 
dimensionality of the data with only a relatively small loss of information. It does this by 
projecting the n-dimensional data reduction into a k-dimensional vector space, where k < n 
and closer than n to the data’s intrinsic dimensionality. This is a two-step process: the first 
step identifies the reduced-dimensionality space, and the second projects the original data 
into it.

Figure 3.46 shows a small two-dimensional data matrix and the corresponding manifold in 
the vector space, both in relation to two orthogonal basis vectors v1 and v2.



Figure 3.46: A two-dimensional matrix with high redundancy between variables

Vectors v1 and v2 both have a substantial degree of variance, as shown both by the 
standard deviation and the scatter plot, and the coefficient of determination shows that they 
are highly redundant in that they share 90 percent of their variance. The aim is to reduce the 
dimensionality of this data from 2 to 1 by eliminating the redundancy and retaining the total 
data variance, that is, the combined variance of v1 and v2.

The first step is to centre the data on 0 by subtracting their respective means from v1 and 
v2. This restates the data in terms of a different orthogonal basis but does not alter either the
variable variances or their covariance. The mean-centred variables and corresponding plot 
are shown in Figure 3.47.



Figure 3.47:Mean-centred version of matrix in Figure 3.46

The basis vectors are now rotated about the origin, preserving their orthogonality, so that 
one or the other of them – in this case the horizontal one  becomes the line of best fit to the 
data distribution, as shown in Figure 3.48.



Figure 3.48: Basis vectors of Figure 3.47 rotated so that v1 becomes the line of best fit to the
data distribution

The line of best fit is the one that minimizes the sum of squared distances between itself and
each of the data points. Two of the distances are shown by way of example in Figure 3.48. 
The distances are squared to prevent negative and positive values from cancelling one 
another; a fuller discussion of using minimization of squared distances to find a line of best fit
to data is given later in the discussion. This again changes the basis, and the variable values
are again adjusted relative to the new basis. Note that:

• The total amount of variance in the data remains constant irrespective of basis: it is 
(26.63+28.56) = 55.19 in Figures 3.46 and 3.47, and (53.85+1.34) = 55.19 in Figure 
3.48.

• The distribution of the variance between the variables has radically altered. Almost all
the variance after rotation is in v1 and very little in v2,as shown in the data table in 
Figure 3.48; graphically, this corresponds to the basis vector for v1 lying along the 
direction of greatest variability in the data, and the basis vector for v2 lying along a 
direction with little variability.

• The redundancy between v1 and v2 has been eliminated. The covariance, correlation
coefficient, and coefficient of determination are all tiny and effectively zero.



This change of basis reveals the scope for dimensionality reduction. Elimination of v2 would 
lose 1.34/55.19 = 2.4 percent of the variance; if one were prepared to discard v2, then data 
dimensionality would be reduced from n = 2 to n = 1, and that reduction would both retain 
most of the original variance while eliminating the original redundancy. This idea extends to 
any dimensionality n and always proceeds in the same three steps:

• The data manifold is mean-centred.

• A new orthogonal basis for the mean-centred data is found in which the basis vectors
are aligned as well as possible along the main directionsof variance in the manifold.

• Dimensionality is reduced by identifying and discarding the variables corresponding 
to the basis vectors with negligible variance.

The second step in this procedure is the key, and that is what PCA offers: it finds an 
orthogonal basis for any given n-dimensional data matrix such that the basis vectors lie 
along the main directions of variance in the data manifold. These basis vectors are the 
principal components of the data. Given a data matrix D whose m rows represent the m 
objects of interest and whose n columns represent the n variables describing those objects, 
PCA creates two matrices which we shall call EVECT and EVAL:

• EVECT is an n × n matrix whose column vectors are the principal components of D 
and constitute an orthonormal basis for D.

• EVAL is an n × n diagonal matrix, that is, one in which the only nonzero values are in 
the diagonal from its upper left to its lower right corner. These diagonal values are the
lengths of the basis vectors in EVECT, and represent the magnitudes of the 
directions of variance in the data manifold.

The diagonal values in EVAL are sorted in descending order of magnitude and are 
synchronized with EVECT such that, for j = 1. . . n, EVALj is the length of basis vector 
EVECTj. Using EVAL, therefore, less important directions of variance can be identified and 
the corresponding basis vectors eliminated from EVECT, leaving a k < n dimensional space 
into which the original data matrix D can be projected. Where such elimination is 
possible,the result is a dimensionality-reduced data matrix.

In the following example D is taken to be a fragment of length-normalized MDECTE small 
enough for convenient exposition, and is shown in Table 3.18a; a dimensionality reduction of
the full MDECTE matrix using PCA is presented at the end of the discussion. D is first mean-
centred, which involves calculating the mean of the values for each matrix column Dj (for j = 
1. . .n) and then subtracting that mean μ from each of the values in Dj: DMCj = Dj−μ.



Table 3.18: A fragment of MDECTE and its mean-centred version

The covariance of each unique pair of columns DMCi and DMCj (for i, j = 1. . .n) is 
calculated as described in earlier in the discussion of redundancy and stored in C, where C 
is an n × n matrix in which both the rows i and columns j represent the variables of DMC, 
and the value at Ci,j is the covariance of variable column i and variable column j in DMC. 

The values on the main diagonal are the ‘covariances’ of the variables with themselves, that 
is, their variances. Table 3.19 shows C derived from DMC.

Table 3.19: Covariance matrix C for DMC

An n-dimensional orthonormal basis for C is constructed such that each basis vector is the 
least-squares best fit to one of the n directions of variation in C, as described above: the first 
basis vector b1 is the line of best least-squares fit along the direction of greatest variance in 
C, the second basisvector b2 is the line of best fit along the second-greatest direction of 
variance in C and orthogonal to b1, the third basis vector b3 is the line of best fit along the 
third-greatest direction of variance in C and orthogonal to both b1 and b2, and so on to bn. 
Each of the bi, for i = 1. . .n, is a principal component of C; the bi are stored as the columns 
of the matrix EVECT in descending order of the variance they represent.



This orthonormal basis is found by calculating the eigenvectors of C. Calculation of 
eigenvectors is a fairly complex matter and is not described here because the details are not
particularly germane to the discussion. Most linear algebra textbooks provide accessible 
accounts; see for example (Lay 2010). The main thing is to realize that the eigenvectors of 
the covariance matrix constitute an orthogonal basis for it.

Table 3.20 shows the eigenvector matrix EVECT for the covariance matrix of Table 3.19, in 
which the columns are the eigenvectors that constitute an orthonormal basis for the 
covariance matrix. 

Table 3.20: Eigenvector matrix EVECT of the covariance matrix C

The orthonormal basis is n-dimensional, just like the original data matrix. To achieve 
dimensionality reduction, a way has to be found of eliminating any basis vectors that lie 
along relatively insignificant directions of variance. The criterion used for this is the relative 
magnitudes of the eigenvalues associated with the eigenvectors in EVAL.

The calculation of eigenvectors associates an eigenvalue with each eigenvector,as already 
noted, and the magnitude of the eigenvalue is an indicationof the degree of variance 
represented by the corresponding eigenvector. Since the eigenvalues are sorted by 
magnitude, all the eigenvectors whose eigenvaluesare below some specified threshold can 
be eliminated, yielding a k-dimensional orthogonal basis for C, where k < n. This is shown in 
Table 3.21.

Table 3.21: Eigenvalue matrix EVAL and column-reduced eigenvector matrix EVECT of the
covariance matrix C

The values in the main diagonal of the matrix in the left-hand side of Table 3.21 are the 
eigenvalues for the corresponding columns of the eigenvector matrix in Table 3.20: 666.21 at
location (1,1) of the eigenvalue matrix is the eigenvalue for column 1 of the eigenvector 
matrix, 384.69 at location (2,2) is the eigenvalue for column 2 of the eigenvector matrix, and 
so on. The final two eigenvalues are much smaller than the others, which indicates that the 



variance represented by the corresponding eigenvectors is small enough to be disregarded 
without much loss of information. Removal of the two rightmost columns of the eigenvector 
matrix yields the 4-dimensional orthonormal basis for the covariance matrix shown on the 
right of Table 3.21; deciding how many basis vectors to retain is not always obvious, and is 
further discussed below.

Once the reduced-dimensionality space has been found, the mean-centred version DMC of 
the original n-dimensional data matrix D is projected into the reduced k-dimensional space, 
yielding a new n × k data matrix Dreduced that still contains most of the variability in D. This 

is done by multiplying DMCT on the left by the reduced-dimensionality eigenvector matrix 

EVECTT
reduced, where the superscript T denotes matrix transposition, that is, re-shaping of

the matrix whereby the rows of the original matrix become columns and the columns rows. 
This multiplication is:

DT
reduced can now be transposed again to show the result in the original format, with rows 

representing the data objects and columns the variables, as in Table 3.22.

Table 3.22: Projection of original 6-dimensional data matrix of Table 3.18 into four-
dimensional space

The original six-dimensional data has been reduced to four dimensions at the cost of some 
information loss; more is said about this cost below. The full MDECTE matrix has already 
been shown to contain a substantial degree of redundancy, and can therefore usefully be 
dimensionality-reduced. The matrices EVECT and EVAL were calculated for it, and the 
distribution of values in the diagonal of EVAL are shown in Figure 3.49.



Figure 3.41: Eigenvalues of the full MDECTE matrix

Or, seen another way, 20 or so variables are sufficient to describe the phonetic usage that 
the original 156 variables described redundantly.

Several issues arise with respect to PCA:

– Selection: Probably the most important issue is selection of a dimensionality threshold 
below which components are eliminated. There is no known general and optimal way of 
determining such a threshold, and selection of one is therefore subjective. There are, 
however, criteria to guide the subjectivity.

• A priori criterion: The number k of dimensions to be selected is known in advance, so
that the eigenvectors with the k largest eigenvalues are chosen. If, for example, one 
wants to represent the data graphically, only the first two or three dimensions are 
usable. The obvious danger here is that too few dimensions will be selected to retain 
sufficient informational content from the original matrix, with potentially misleading 
results, but this is a matterof judgement in particular applications.

• Eigenvalue criterion: Only eigenvectors having an eigenvalue ≥ 1 are considered 
significant and retained on the grounds that significant dimensions should represent 
the variance of at least a single variable, and an eigenvalue < 1 drops below that 
threshold.

• Scree test criterion: The scree test is so called by analogy with the erosion debris or 
scree that collects at the foot of a mountain. The eigenvalues are sorted in 
descending order of magnitude and plotted; the ‘scree’ descends from the ‘mountain’ 
at the left of the plot to the ‘flat’ on the right, and the further to the right one goes the 
less important the eigenvalues become. The scree shown in Figure 3.41, was used 
to reduce the dimensionality of MDECTE to 20. Selection of a scree threshold is a 
matter of researcher judgement.

• Percentage of variance criterion: On the basis of the eigenvectors, it is possible to 
calculate the cumulative percentage of variance captured by successive dimensions, 
and most PCA software provides this information. Thus, the dimension with the 



largest eigenvector might capture 68 percent of the total data variance, and the 
second-largest 17 percent, giving a cumulative 85 percent, the third-largest 8 percent
giving a cumulative 93 percent, and so on. The question, of course, is what 
percentage is enough; this is a matter for the researcher to decide relative to a 
particular application. The cumulative percentages in the case ofMDECTE, where the
first 20 eigenvectors were selected on the basis of the scree test, are given in Table 
3.23.

Table 3.23: Cumulative percentages of variance captured by the first n ≤ 20 eigenvectors

The first 20 eigenvectors capture 90 percent of the variance in the original data; the first 30 
capture 95 percent, and the first 61 100 percent. Even the safest option of keeping the first 
61 eigenvectors would result in a very substantial reduction in dimensionality, but one might 
take the view that the small gain in terms of data loss over, say, 20 or 30 is not worth the 
added dimensionality.

– Variable interpretation: In any data matrix the variables typically have labels that are 
semantically significant to the researcher in the sense that they denote aspects of the 
research domain considered to be relevant. Because PCA defines a new set of variables, 
these labels are no longer applicable to the columns of the dimensionality-reduced matrix. 
This is why the variables in the PCA-reduced matrices in the foregoing discussion were 
given the semantically-neutral labels v1 . . . v4; the values for these variables are self-
evidently not interpretable as the frequencies of the original data since some of them are 
negative. In applications where the aim is simply dimensionality reduction and semantic 
interpretation of the new variables is not an issue, this doesn’t matter. There are, however, 
applications where understanding the meaning of the new variables relative to the original 
ones might be useful or essential, and there is some scope for this. Jolliffe (2002: 63) notes 
that “there is no reason, a priori, why a mathematically derived linear function of the original 
variables, which is what the PCs are, should have a simple interpretation”, but that “it is 
remarkable how often it seems to be possible to interpret the first few PCs”, though “it is 
probable that some interpretations owe a lot to the analyst’s ingenuity and imagination”. In 
other words, there is no guarantee that an intuitively satisfying interpretation of the principal 



components is there to be found, and, if one is proposed, there is no obvious way of 
assessing its validity.

– Linearity: PCA is an effective and very widely used dimensionality reduction technique, but 
because it takes no account of manifold shape it can yield misleading results when applied 
to nonlinear manifolds. To deal with the latter, nonlinear versions of PCA have been 
developed. One of these infers a reduced-dimensionality representation from data using the 
learning capability of artificial neural networks (ANN) – see Diamantaras and Kung (1996), 
Carreira-Perpinan (1997), and Haykin (1999: Ch. 8). Another, the Generative Topographic 
Mapping (GTM) (Bishop, Svensen, andWilliams 1998), is a latent variable model which 
assumes that a relatively small number of low-dimensional probability distributions underlie 
high-dimensional observed data, and whose aim is to model the observed data in terms of 
those distributions. A third and increasingly widely used nonlinear variant of PCA is Kernel 
PCA, which projects the nonlinear manifold into a higher-dimensional space in which it 
becomes linear and then applies the eigendecomposition procedure described above to that 
linear representation, thereby in effect taking account of the original data nonlinearity in the 
dimensionality reduction: Schölkopf, Smola, and Müller (1998), Schölkopf, Smola, and Müller
(1999), Ham et al. (2004), Shawe-Taylor and Cristianini (2004: Ch. 6), Lee and Verleysen 
(2007: Ch. 4.4.1).

– Other issues: Other PCA issues are the use of the correlation rather than covariance 
matrix and the effect of outliers, for which see: Jolliffe (2002) and Jackson (2003); selected 
briefer accounts are in Bishop (1995: 310ff.), Everitt and Dunn (2001: 48ff.), and Tabachnick 
and Fidell(2007: Ch. 13).

The remainder of this part of the discussion describes a range of other variable extraction 
methods, categorized by whether or not they take data nonlinearity into account.

Singular value decomposition (SVD)

SVD (Jackson 2003; Jolliffe 2002; Wall, Rechtsteiner, and Rocha 2003) is a theorem in 
linear algebra whereby any matrix D with m rows and n columns can be represented as the 
product of three matrices:

where

• U, S, and V are the matrices whose product gives D.

• The column vectors of U are an orthonormal basis for the column vectors of D.

• The column vectors of V are an orthonormal basis for the row vectors of D; the T 
superscript denotes transposition, that is, V is rearranged so that its rows become 
columns and its columns rows.

• S is a diagonal matrix, that is, a matrix having nonzero values only on the diagonal 
from S1,1 to Sm,n, and those values in the present case are the singular values of D 



in descending order of magnitude. These singular values are the square roots of the 
eigenvectors of U and V.

Because the column vectors of V are an orthonormal basis for D and the values in S are 
ranked by magnitude, SVD can be used for dimensionality reduction in exactly the same way
as PCA. Indeed, when D is a covariance or correlation matrix, SVD and PCA are identical. 
SVD is more general than PCA because it can be applied to matrices of arbitrary dimensions
with unrestricted numerical values whereas PCA is restricted to square matrices containing 
covariances or correlations, but in practice it is a straightforward matter to calculate a 
covariance or correlation matrix for whatever data matrix one wants to analyze, so the 
choice between SVD and PCA is a matter of preference.

Factor Analysis (FA)

FA is very similar to PCA, and the two are often conflated in the literature. Relative to a 
redundant n-dimensional matrix D, both use eigenvector decomposition to derive a set of 
basis vectors from the variance / covariance matrix for D, both use the relative magnitudes 
of the eigenvalues associated with the eigenvectors to select a reduced number of basis 
vectors k < n, and the k vectors are taken to constitute a reduced-dimensionality basis into 
which D can be projected in order to reduce its dimensionality from n to k. They differ, 
however, both conceptually and, as a consequence, in how variability in data is analyzed.

PCA is a formal mathematical exercize that uses patterns of covariance in redundant data to 
find the main directions and magnitudes of variance, and these directions are expressed as 
a set of non-redundant synthetic variables in terms of which the original variables can be re-
stated. These synthetic variables may or may not have a meaningful interpretation relative to
the research domain that the original variables describe, but there is no explicit or implicit 
claim that they necessarily do; PCA is simply a means to a dimensionality reduction end. FA 
differs in that it does make a substantive claim about the meaningfulness of the variables it 
derives. Specifically, the claim is that observed data represent significant aspects of the 
natural process which generated them in a way that is obscured by various kinds of noise 
and by suboptimal selection of redundant variables, that these significant aspects are latent 
in the observed data, and that the factors which FA derives identifies these aspects. As such,
FA offers a scientific hypothesis about the natural process to which it relates.

The basis for this claim is what distinguishes FA mathematically from PCA: in deriving 
components, PCA uses all the variance in a data matrix, but FA uses only a portion of it. To 
understand the significance of this, it is first necessary to be aware of the distinction between
different kinds of variance that FA makes. Relative to a given observed data variable vi in an 

n-dimensional matrix D, where i is in the range 1. . .n:

• The common variance of vi is the the variance that vi shares will all the other 

variables in D; this is referred to as its communality.

• Specific variance of vi is the variance unique to vi.

• Error variance of vi is the variance due to the noise factors associated with data.

• Total variance of vi is the sum of its common, specific, and error variances.



PCA analyzes total variance, but FA analyzes common variance only, on the grounds that 
common variance reflects the essentials of the natural process which the data describes, 
and that analysis of the patterns of covariance in the data calculated only on communality 
allows scientifically meaningful factors to be extracted.

FA has two main disadvantages relative to PCA: (i) the common variance on which FA is 
based is complicated to isolate whereas the total variance on which PCA is based is 
straightforward, and (ii) the factors which FA generates are not unique, whereas PCA 
generates a unique and optimal summary of the variance in a matrix. On the other hand, FA 
has the advantage when meaningful interpretation of the derived variables is required by the 
researcher. Where, therefore, the aim is simply dimensionality reduction and interpretation of
the extracted variables is not crucial, PCA is the choice for its simplicity and optimality, but 
where meaningful interpretation of the extracted variables is important, FA is preferred.

For discussions of FA see Jolliffe (2002), Jackson (2003), Tabachnick and Fidell (2007: Ch. 
13), Hair et al. (2010: Ch. 3). Closely related to FA is Independent Component Analysis, 
whose aim is to model data as a linear mixture of underlying factors (Hyvärinen, Karhunen, 
and Oja 2001; Stone 2004).

Multidimensional Scaling (MDS)

PCA uses variance preservation as its criterion for retaining as much of the informational 
content of data as possible in dimensionality reduction. MDS uses a different criterion, 
preservation of proximities among data objects, on the grounds that proximity is an indicator 
of the relative similarities of the real-world objects which the data represents, and therefore 
of informational content; if a low-dimensional representation of the proximities can be 
constructed, then the representation preserves the informational content of the original data. 
Given an m × m proximity matrix P derived from an m × n data matrix M, MDS finds an m × 
k reduced-dimensionality representation of M, where k is a user-specified parameter. MDS is
not a single method but a family of variants. The present section describes the original 
method on which the variants are ultimately based, classical metric MDS , and a variant, 
metric least squares MDS .

Classical MDS requires that the proximity measure on which it is to operate be Euclidean 
distance. Given an m × n data matrix M, therefore, the first step is to calculate the m × m 
Euclidean distance matrix E for M. Thereafter, the algorithm is:

1. Mean-centre E by calculating the mean value for each row Ei (for i = 1. . .m) and 

subtracting the mean from each value in Ei.

2. Calculate an m × m matrix S each of whose values Si,j is the inner product of rows Ei

and Ej, where the inner product is the sum of the products of the corresponding 

elements as described earlier and the T superscript denotes transposition: 

3. Calculate the eigenvectors and eigenvalues EVECT and EVAL of S, as already 
described.



4. Use the eigenvalues, as in PCA, to find the number of eigenvectors k  worth 
retaining.

5. Project the original data matrix M into the k-dimensional space, again as in PCA: 

This algorithm is very reminiscent of PCA, and it can in fact be shown that classical MDS 
and PCA are equivalent and give identical results – cf. Borg and Groenen (2005: Ch. 24), 
Lee and Verleysen (2007: Ch. 4) –, and are therefore simply alternative solutions to a 
problem. The variant of classical MDS about to be described, however, extends the utility of 
MDS beyond what PCA is capable of, and provides the basis for additional dimensionality 
techniques more powerful than either of them.

Classical MDS and PCA both give exact algebraic mappings of data into a lower-
dimensional representation. The implicit assumption is that the original data is noise-free. 
This is, however, not always and perhaps not even usually the case with data derived from 
real-world observation, and where noise is present classical MDS and PCA both include it in 
calculating their lower-dimensional projections. Metric least squares MDS recognizes this as 
a problem, and to compensate for it relaxes the definition of the mapping from higher-
dimensional to lower-dimensional data as algebraically exact to approximate: it generates an
m × k representation matrix M' of an m × n numerical-valued matrix M by finding an M' for 
which the distances between all distinct pairings of row vectors i, j in M' are as close as 
possible to the proximities pi j between corresponding row vectors of M, for i,j = 1. . .m. The 

reasoning is that when the distance relations in M and M' are sufficiently similar, M' is a good
reduced-dimensionality representation of M. Metric least squares MDS operates on distance 
measurement of proximity. This can be any variety of distance measure, but for simplicity of 
exposition it will here be assumed to be Euclidean.

The mapping f from M to M'  could in principle be explicitly defined but is in practice 
approximated by an iterative procedure using the following algorithm:

1. Calculate the Euclidean distance matrix D(M) for all distinct pairs (i, j) of the m rows 
of M, so that di, j ∈ D(M) is the distance from row i to row j of M, for i, j = 1. . .m.

2. Select a dimensionality k and construct an m × k matrix M' in which m k-dimensional 
vectors are randomly located in the k-space.

3. Calculate the Euclidean distance matrix D(M') for all distinct pairs i, j of the m rows of 
M', so that di, j ∈ D(M') is the distance from row i to row j of M', for i, j = 1. . .m.

4. Compare the distance matrices D(M) and D(M') to determine how close they are, 
where closeness is quantified in terms of an objective function called a stress 
function. If the stress function has reached a predetermined threshold of acceptable 
closeness between D(M) and D(M'), stop. Otherwise, adjust the values in the m row 
vectors of M' so that the distances between their new locations in the k-space more 
closely approximate the corresponding ones in D(M), and return to step (3).



Finding M' is, in short, a matter of moving its row vectors around in the k-space until the 
distance relations between them are acceptably close to those of the corresponding vectors 
in M.

The stress function is based on the statistical concept of squared error. The difference or 

squared error e2 between a proximity di, j in M and a distance di, j in M' is 

The total difference between all δi j and di j is therefore

This measure is not as useful as it could be, for two reasons. The first is that the total error is
a squared quantity and not easily interpretable in terms of the original numerical scale of the 
proximities, and the solution is to unsquare it; the reasoning here is the same as that for 
taking the square root of variance to obtain a more comprehensible measure, the standard 
deviation. The second is that the magnitude of the error is scale-dependent, so that a small 
difference between proximities and distances measured on a large scale can appear greater 
than a large difference measured on a small scale, and the solution in this case is to make 
the error scale-independent; the reasoning in this case is that of the discussion of variable 
scaling earlier on. The reformulation of the squared error expression incorporating these 
changes is called stress, which is

This is the stress function used to measure the similarity between D(M) and D(M'). By 
iterating steps (3) and (4) in the above MDS algorithm, the value of this stress function is 
gradually minimized until it reaches the defined threshold and the iteration stops. 
Minimization of the stress function in MDS is a particular case of what has become an 
important and extensive topic across a range of science and engineering disciplines, 
function optimization. Various optimization methods such as gradient descent are available 
but all are complex and presentation would serve little purpose for present concerns, so 
nothing further is said about them here; for details of their application in MDS see Borg and 
Groenen (2005: Ch. 8).

As with other dimensionality reduction methods, a threshold dimensionality k must be 
determined for MDS. The indicator that k is too small is nonzero stress. If k = n, that is, the 
selected dimensionality is the same as the original data dimensionality, the stress will be 
zero. Any k less than the (unknown) intrinsic dimension will involve some increase in stress; 
the question is what the dimensionality should be to give an acceptable level. The only 
obvious answer is empirical. Starting with k = 1, MDS is applied for monotonically-increasing



values of k, and the behaviour of the stress is observed: when it stops decreasing 
significantly with increasing k, an approximation to the intrinsic dimension of the data, and 
thus of optimal k, has been reached (ibid.: 4f.). Figure 3.42 shows this by applying MDS to 
MDECTE for each increment in k in the range 1. . .156 and plotting stress in each case. The 
indication is that an appropriate dimensionality for MDECTE is in the range 20. . . 30.

Figure 3.42: Sorted MDS stress values for k = 1. . .156 with respect to MDECTE

Having generated a reduced-dimensionality representation, it is natural to ask how good a 
representation of the original data it is. The degree of stress is an obvious indicator, though 
an ambiguous one because there is no principled criterion for what stress value constitutes 
an acceptable threshold of closeness (Borg and Groenen 2005: 47ff.); essentially, a stress 
value is significant only in relation to its location in the profile of stress values for the given 
dataset, as shown for MDECTE in Figure 3.42. Another is the degree of correlation between 
the distances of the original data and the distances of the reduced - dimensionality 
representation, which can be stated as a correlation coefficient or visualized as a scatter 
plot, or both. Figure 3.43 shows this for a reduction of MDECTE to dimensionality 20 which 
Figure 3.42 indicates is a reasonable choice.



Figure 3.43: Correlation of the distances between row vectors in MDECTE and in
arepresentation of MDECTE reduced to dimensionality 20 by MDS

The indicators support the conclusion that the 20-dimensional representation of MDECTE is 
a good one: the stress value of 0.0075 is low relative to the stress profile in Figure 3.42, the 
correlation is near-perfect, and the plot of proximities on the horizontal axis against distances
on the vertical is almost perfectly linear.

For MDS see Kruskal and Wish (1978), Jolliffe (2002), Jackson (2003), and Borg and 
Groenen (2005). Good brief accounts are in Jain and Dubes (1988: Ch. 2.7), Groenen and 
Velden (2005), Izenman (2008: Ch. 13), Lee and Verleysen (2007: Ch. 4.4.2), Hair et al. 
(2010: Ch. 10), and Martinez, Martinez, and Solka (2011: Ch. 3).

Sammon’s Mapping

Sammon’s mapping is a nonlinear variant of metric least squares MDS. It differs from MDS 
in a single modification to the stress function shown in Table 3.24.

Table 3.24: Comparison of MDS and Sammon’s Mapping stress functions

The difference is in the normalization term: linear MDS normalizes by the distances d in the 
reduced-dimensionality space, and the Sammon mapping by the distances δ in the full-
dimensionality one. This difference allows the Sammon version to incorporate nonlinearity in 
higher-dimensional data into the lower-dimensional representation which it generates. To 
see why so apparently small a change can have so fundamental an effect, consider the 
manifold in Figure 3.44.

Figure 3.44: The effect of the normalization term in Sammon’s Mapping



The manifold is nonlinear, but linear measurement does not capture the geodesic distances 
between the points on it equally well. The distance from f to e, for example, is relatively short
and the linear measure is a good approximation to the geodesic distance; from f to c and f to
a it is longer and the linear measure is a less good approximation; from a to k it is less good 
still. The best way to capture the shape of the manifold is to add the distances a→b, b→c, 
and so on, and simply to disregard the remaining distances.

Sammon’s mapping is based on this idea. When the normalization term, that is, the distance 
δi, j , has a relatively large value, the value of the stress function is relatively small, but if δi, j 

is relatively small the stress function value is relatively large; because the iterative procedure
underlying metric least squares MDS and Sammon minimizes the stress function, this 
means that the minimization is based much more on the smaller than on the larger linear 
distances in the data: the larger the value of the stress function the greater the adjustment to
the output matrix in the MDS algorithm. In other words, in generating the reduced-
dimensionality matrix Sammon’s mapping concentrates on the smaller linear distances in the
input matrix because these are better approximations to the shape of whatever nonlinearity 
there is in the data, and incrementally ignores the distances as they grow larger.

As with metric least squares MDS, the reduced dimensionality k is user specified and can be
estimated by applying Sammon’s mapping to the data for incrementally increasing values of 
k, recording the stress for each k, and then plotting the stress values to see where they stop 
decreasing significantly. Figure 3.45 shows this for the range k = 1. . .156.

Figure 3.45: Sorted Sammon’s mapping stress values for k = 1. . .156 with respect to
MDECTE

Figure 3.46 shows this for a reduction of MDECTE to dimensionality 12, which 3.45 indicates
is a reasonable choice.



Figure 3.46: Correlation of the distances between row vectors in MDECTE and in a
representation ofMDECTE reduced to dimensionality 12 by Sammon’s mapping

Though still close, the correlation between distances in the original-dimensionality and 
reduced-dimensionality spaces is here slightly less good than for MDS relative to the same 
data. Formally, therefore, the MDS result is better than the Sammon one, even if only 
marginally. This does not, however, warrant the conclusion that the MDS dimensionality 
reduction is better than the Sammon. Such a conclusion assumes that the original linear 
Euclidean distances accurately represent the shape of the MDECTE data manifold. But, as 
we have seen, MDECTE contains substantial nonlinearity. The Sammon dimensionality-
reduced matrix represents that nonlinearity and is for that reason to be preferred; the slightly 
less good formal indicators arise because, in taking account of the nonlinearity, Sammon 
loses some linear distance information.

The original paper for Sammon’s mapping is Sammon (1969); Lee and Verleysen (2007: Ch 
4.2.3) provide a good recent discussion of it. For variants see Lee and Verleysen (ibid.: 86f.);
probably the most important among these is curvilinear component analysis (Demartines 
and Hérault 1997), for further discussion of which see Lee and Verleysen (2007: 88ff.).

Isomap

Isomap is a variant of MDS which reduces dimensionality by operating on a nonlinear rather 
than on a linear distance matrix. Given a linear distance matrix DL derived from a data matrix

M, Isomap derives a graph-distance approximation to a geodesic distance matrix DG from 

DL, and DG is then the basis for dimensionality reduction using either the classical or the 

metric least squares MDS procedure; graph distance approximation to geodesic distance 
has already been described in the foregoing discussion of data geometry. The Isomap 
approximation differs somewhat from the procedure already described, however, in that it 



uses the topological concept of neighbourhood. The present discussion gives a brief account
of this concept before going on to describe Isomap and applying it to the MDECTE data.

Topology (Munkres 2000; Reid and Szendroi 2005; Sutherland 2009) is an aspect of 
contemporary mathematics that grew out of metric space geometry. Its objects of study are 
manifolds, but these are studied as spaces in their own right, topological spaces, without 
reference to any embedding metric space and associated coordinate system. Topology 
would, for example, describe a manifold embedded in the metric space of Figure 3.47a 
independently both of the metric defined on the space and of the coordinates relative to 
which the distances among points are calculated, as in Figure 3.47b.

Figure 3.47: A manifold embedded in metric space (a) and as a topologicalmanifold (b)

Topology replaces the concept of metric and associated coordinate system with relative 
nearness of points to one another in the manifold as the mathematical structure defined on 
the underlying set; relative nearness of points is determined by a function which, for any 
given point p in the manifold, returns the set of all points within some specified proximity to p.
But how, in the absence of a metric and a coordinate system, is the proximity characterized?

The answer is that topological spaces are derived from metric ones and inherit from the 
latter the concept of neighbourhoods. In a metric space, a subset of points which from a 
topological point of view constitutes a manifold can itself be partitioned into subsets of a 
fixed size called neighbourhoods, where the neighbourhood of a point p in the manifold can 
be defined either as the set of all points within some fixed radius e from p or as the k nearest
neighbours of p using the existing metric and coordinates; in Figure 3.48 a small region of 
the manifold from Figure 3.47 is magnified to exemplify these two types of neighbourhood.



Figure 3.48: Neighbourhoods in a magnified fragment of a geometric object in metric space

In Figure 3.48a the neighbourhood of every point is the other points within a radius of e, 
shown as circles within the magnification rectangle; in 3.48b a neighbourhood of any point is 
the k nearest points irrespective of distance, shown for k = 3 as lines connecting each point 
to the three nearest to itself. Once a manifold has been partitioned into neighbourhoods and 
thereby transformed into a topological space, the frame of reference is discarded and only 
the neighbourhoods defined in terms of the metric are retained. In this way, manifolds of 
arbitrary shape can be conceptualized as being composed of metric subspaces; if the 
original metric is Euclidean, for example, the manifold in Figure 3.48 can be understood as a
patchwork of locally-Euclidean subspaces. Intuitively, this corresponds to regarding the 
curved surface of the Earth as a patchwork of flat neighbourhoods, which is how most 
people see it.

Topological spaces are supersets of metric spaces, so that every metric space is also a 
topological one. This observation is made for convenience of reference to geometrical 
objects in subsequent discussion: these are referred to as manifolds irrespective of whether 
they are embedded in a metric space or constitute a topological space without reference to a
coordinate system.

Assume now the existence of an m × n data manifold M embedded in a metric space and a 
specification of neighbourhood size as a radius e or as k  nearest neighbours; in what 
follows, only the k nearest neighbour specification is used to avoid repetition. Isomap first 
transforms M into a topological manifold by constructing a set of k-neighbourhoods. This is 
done in two steps:

1. A matrix of linear distances between the data objects, that is, the rows of M, is calculated; 
assume that the measure is Euclidean and call the matrix D.

2. A neighbourhood matrix N based on D is calculated which shows the distance of each of 
the data objects Mi (i = 1. . .m) to its k nearest neighbours.

This is exemplified with reference to the small randomly generated two-dimensional matrix M
whose scatterplot is shown with row labels in Figure 3.49.



Figure 3.49: Scatter plot of a randomly generated two-dimensional matrix M

Table 3.25 shows the data matrix M underlying Figure 3.49, Table 3.26 the Euclidean 
distance matrix D for M, and Table 3.27 the corresponding neighbourhood matrix N for k = 4.

Table 3.25: Data matrix M underlying Figure 3.49

Table 3.26: Euclidean distance matrix D for data in Table 3.25

Table 3.27: Neighbourhood matrix N corresponding to Euclidean distance matrix in Table
3.26



M and D are self-explanatory in the light of the discussion so far. N is less so. Note that, 
apart from 0 in the main diagonal, each row of N has exactly 4 numerical values, 
corresponding to k = 4. The numerical value at Ni,j indicates both that j is in the k-

neighbourhood of i and the distance between i and j; the k-neighbourhood of N1, for 

example, includes N2, N4, N5, and N8, which can be visually confirmed by Figure 3.49. The 

zeros indicate that a data object is at a nil distance from itself, and the inf values (for ‘infinity’)
that j is not in the neighbourhood of i.

Isomap now interprets N as a graph in which data objects are nodes, the numerical values 
are arcs labelled with distances between pairs of nodes, and the inf values indicate no arc. 
In graph representation, the N of Table 3.27 looks like Figure 3.50.

Figure 3.50: Graph interpretation of the neighbourhoodmatrix in Table 3.27

Using the graph, the shortest node-to-node distance between any two points in the data 
manifold can be calculated using one of the standard graph traversal algorithms (Gross and 
Yellen 2006). The shortest distance between node 8 and node 7, for example, follows the 
path 8→5→3→6→7, and is 0.451 + 0.368 + 0.148 + 0.182 = 1.149. Reference to Table 3.26 
shows that this is greater than the Euclidean distance of 0.805, which goes directly from 8 to 
7. Isomap calculates the graph distances between all points in the data manifold and stores 
them in a matrix G. The one derived from Figure 3.50 is shown in Table 3.28; note that the 



values shown in that table may not correspond exactly to those derivable from Figure 3.50 
on account of round-off discrepancies. Where there is only a single arc traversal the graph 
and Euclidean distances are identical but for multi-arc traversals the graph distances are 
larger where the path between data objects is not linear. Isomap applies the classical or 
metric least squares MDS procedure to such graph distance matrices G to reduce their 
dimensionality, as already described.

Table 3.28: Shortest-path graph distance table for Table 3.27 / Figure 3.50

Selection of a dimensionality k and assessment of how well the original distances have been
preserved in the reduced-dimensionality representation are as for MDS and Sammon’s 
mapping, and are not repeated here; where the classical MDS procedure is used, the 
criterion for selection of k is residual variance rather than stress, and, for MDECTE, this 
indicates a value of k in the range 10. . . 20, which is consistent with those for MDS and 
Sammon’s mapping.

It remains, finally, to consider an important problem with Isomap. The size of the 
neighbourhood is prespecified by the user, and this can be problematical for Isomap in two 
ways. If k or e is too small the neighbourhoods do not intersect and the graph becomes 
disconnected; Figure 3.51a shows this for the data in Table 3.27, where k =3 rather than 4. 
Because the graph is disconnected, the graph distances between data objects cannot all be 
calculated; the matrix of all graph distances G for k = 3 is shown in Figure 3.51b, where inf 
indicates no path. Because the distance matrix is incomplete, the Isomap dimensionality 
reduction fails.



Figure 3.51: Shortest-path graph distance table for the data in Table 3.27, for k = 3

The way to deal with this problem is incrementally to increase k until the matrix of all 
distances G no longer contains inf entries. This potentially creates the second of the above-
mentioned problems: too large a neighbourhood leads to so-called short-circuiting, where 
the connectivity of the neighbourhoods fails correctly to represent the manifold shape. To 
show what this involves, a simplified version of the Swiss roll manifold of Figure 3.52 in two-
dimensional space is used.



Figure 3.52: Short-circuiting for too-large values of k / e

The geodesic distance from P to R in Figure 3.52 follows the spiral, and the neighbourhood 
must be chosen to follow it. It is, however, visually clear in 3.52a that, for k = 3 or greater, the
neighbourhood of a point can include other points geodesically distant from it: taking point P, 
k = 2 correctly includes S and T, but k = 3 includes Q rather than U because distance d2 is 
less than d1. This cuts all points U to Q out of the graph approximation and seriously 
misrepresents the shape of the manifold. Figure 3.52b shows this for the radius definition of 
neighbourhoods, where e = r1 correctly includes S and T, but e = r2 includes Q and points 
adjacent to it rather than U.

One might argue that the Swiss roll is a contrived example and that data manifolds in real-
world applications are unlikely to present this problem. MDECTE seems to, however. The 
foregoing discussion leads one to expect that the likelihood of short-circuiting grows with 
increasing neighbourhood size. As we shall see, the data objects in MDECTE form two well 
separated clusters, and to achieve full connectivity in the graph approximation of geodesic 
distance for it, a neighbourhood of k = 30, almost half the number of data objects, is 
required; in such high-dimensional data there is no possibility of checking for short-circuiting 
directly by inspection of data plots, as in Figure 3.51, but with so large a neighbourhood it 
seems intuitively likely. This suspicion will, moreover, apply to any data in which there are 
well-separated clusters – precisely the kind of data with which this book is concerned, and 
with respect to which dimensionality reduction is supposed to serve as a means to 
identification of the clusters. In other words, Isomap seems not to be well suited to 
dimensionality reduction of strongly clustered data.

The short-circuiting problem was identified by (Balasumbramanian and Schwartz 2002) and 
currently remains unresolved. Until it is, an alternative is simply to dispense with the 
neighbourhoods and to derive the matrix of graph distances directly from the linear distance 
matrix, as described in the discussion of nonlinearity detection below. This has the drawback
that any noise present in the data is included in the graph distance calculation, which can be 



a problem for data with a large noise element, but has the major advantage that the 
possibility of short-circuiting is eliminated because the graph distances all represent 
minimum spanning tree traversals.

Isomap was proposed by Tenenbaum, deSilva, and Langford (2000), and modified to deal 
with a greater range of nonlinear manifold types in De- Silva and Tenenbaum (2003). Other 
useful accounts are in Lee and Verleysen (2007: 102ff.), Izenman (2008: Ch. 16), and Xu 
and Wunsch (2009: Ch. 9.3.3). Numerous other nonlinear dimensionality reduction methods 
exist. Nonlinear versions of PCA have already been mentioned; others are Locally Linear 
Embedding (Roweis and Saul 2000), Principal Curves (Hastie and Stuetzle 1989), Principal 
Manifolds (Gorban et al. 2007), Curvilinear Component Analysis (Demartines and Hérault 
1997), Curvilinear Distance Analysis (Lee, Lendasse, and Verleysen 2004), and Laplacian 
Eigenmaps (Belkin and Niyogi 2003). For discussions of these and others see: Carreira- 
Perpinan (1997), Carreira-Perpinan (2011), Fodor (2002), Lee and Verleysen (2007), 
Izenman (2008: Ch. 16), and Maaten, Postma, and Herik (2009).

Identification of nonlinearity

The foregoing discussion has made a distinction between dimensionality reduction methods 
appropriate to linear data manifolds and methods appropriate to nonlinear ones. How does 
one know if a manifold is linear or nonlinear, however, and therefore which class of reduction
methods to apply? Where the data are low-dimensional the question can be resolved by 
plotting, but this is impossible for higher-dimensional data; this section describes various 
ways of identifying nonlinearity in the latter case.

Data abstracted from a natural process known to be linear are themselves guaranteed to be 
linear, but data abstracted from a known nonlinear process are not necessarily nonlinear. To 
see why, consider the sigmoid function used to model a range of processes such as 
population growth in the natural world, shown in Figure 3.53.

Figure 3.53: Data sampling from a natural process described by the function y = 1/(1+ e−x)



The linearity or otherwise of data based on empirical observation of a natural process is 
determined by what part of the process is observed. If observation comes from the linear 
part (A) of the theoretical distribution in Figure 3.53 then the data will be linear, but if from the
nonlinear part (B) then the data will be nonlinear. Ideally, of course, empirical observation 
should be representative in the statistical sense, but the representativeness of data is not 
usually known. The only way to find out if data is nonlinear is to test for it.

In practice, data abstracted from observation are likely to contain at least some noise, and it 
is consequently unlikely that strictly linear relationships between variables will be found. 
Instead, one is looking for degrees of deviation from linearity. Three ways of doing this are 
presented.

The graphical method is based on pairwise scatter-plotting of variables and subsequent 
visual identification of deviation from linearity. In Figure 3.54a, for example, the essentially 
linear relationship of variables v1 and v2 is visually clear despite the scatter, and the 
nonlinear relationship in 3.58b equally so.

Figure 3.54: Scatter plots of essentially linear and essentially nonlinear bivariate data
variables v1 and v2

Looking for nonlinearity in this way involves plotting of all possible distinct pairings of data 
variables, that is, of columns in the data matrix, and visual identification of any nonlinearity. 
Such plotting provides an intuition for the shape of the data, but the number of plots np 
required to visualize all distinct pairs of variables as in 

where n is the number of variables; for n = 100, there would be 4950 different variable pairs 
to consider. This can be reduced by examining only a tractable subset of the more important 
variables in any given application, and so is not typically an insuperable problem; for what is 
meant by important variables and how to select them, see Huan and Motada (1998) and 



Manning, Raghavan, and Schütze (2008: 251f.). Visual interpretation of scatter plots is 
subjective, moreover, and where the shape of the relationship between variables is not as 
unambiguous as those in Figure 3.54 different observers are likely to draw different 
conclusions. For example, is the relationship in Figure 3.55 linear with substantial noise, or 
nonlinear?

Figure 3.55: Possibly noisy linear, possibly nonlinear bivariate data

To be fully useful, graphically-based identification of nonlinearity needs to be supplemented 
by quantitative measures of the degree of nonlinearity.

Regression analysis provides this; for what follows see Draper and Smith (1998), Izenman 
(2008), Miles and Shevlin (2001),Motulsky and Christopoulos (2004), and Seber and Wild 
(2003). Regression attempts to model the relationship between one or more independent 
variables whose values can vary freely, and a dependent variable whose values are 
hypothesized to be causally determined by the independent one(s), by finding a curve and 
the corresponding mathematical function which best fits the data distribution. The outline of 
regression in this section simplifies in two main respects, neither of which compromises the 
generality of subsequent discussion based on it:

• Because the aim is simply to decide whether given data are linear or nonlinear rather
than to find the optimal mathematical fit, the discussion confines itself to parametric 
regression, where a specific mathematical model for the relationship between 
independent and dependent variables is proposed a priori, and does not address 
nonparametric regression, where the model is inferred from the data.

• The discussion is based on the simplest case of one independent variable; the 
principles of regression extend straightforwardly to multiple independent variables.

The first step in parametric regression is to select a mathematical model that relates the 
values of the dependent variable y to those of the independent variable x. A linear model 
proposes a linear relationship between x and y, that is, a straight line of the general form



where a and b are scalar constants representing the slope of the line and the intercept of the
line with the y-axis respectively. In regression a and b are unknown and are to be 
determined. This is done by finding values for a and b such that the sum of squared 
residuals, that is, distances from the line of best fit to the dependent-variable values on the 
y-axis, shown as the vertical lines from the data points to the line of best fit in Figure 3.56, is 
minimized.

Figure 3.56: Linear model with residuals

A nonlinear model proposes a nonlinear relationship between x and y. Numerous nonlinear 
models are available. Frequently used ones in regression are polynomials with the general 
form

where the an . . .a0 are constants and n is the order of the polynomial; where n = 1 the 

polynomial is first-order, where n = 2 it as second-order and so on, though traditionally 
orders 1, 2, and 3 are called ‘linear’, ‘quadratic’, and ‘cubic’ respectively. As with linear 
regression, nonlinear regression finds the line best fit by calculating the coefficients an . . .a0 

which minimize the sum of squared residuals between the line and the y values; Figure 3.57 
shows this for quadratic and cubic polynomials. How the coefficents an . . .a0 are found is 

described in relevant textbooks, including those cited above.



Figure 3.57: Quadratic and cubic polynomials with curves of best fit

Using regression to identify nonlinearity in data would appear simply to be a matter of 
comparing the goodness of fit of the linear model with that of whatever nonlinear model has 
been chosen: the data are linear if a straight line provides as good a fit (using the least-
squares criterion) as any other mathematical function, and nonlinear if the nonlinear model is
a significantly better fit than the linear one (Mark and Workman 2005a). In Figure 3.58, for 
example, the cubic model looks like it fits the data best, the quadratic less well, and the 
linear least well; based on visual inspection, one would say that these data are nonlinear.



Figure 3.58: Linear, quadratic and cubic polynomials with curves of best fit

Such direct visual interpretation can be corroborated in several ways.

A statistical model differs from a deterministic one in that the functional relationship between 
independent and dependent variables which it posits does not necessarily hold exactly for 
each value of the independent variable, as for a deterministic model, but only on average. 
One therefore expects a random scatter of dependent variable values about a line of best fit.
The upper plot in Figure 3.59, for example, shows a linear model for bivariate data, and the 
lower shows a scatter plot of the residuals relative to the line of best fit, which is shown as 
the horizontal line at 0 on the y-axis.



Figure 3.59: Linear model with corresponding residual plot

The residual plot emphasizes the deviation from the line of best fit and in this case shows no
systematic pattern, indicating a good fit. In Figure 3.60, on the other hand, the residual plot 
corresponding to the linear model shows substantial deviation from randomness, and the 
one for the cubic model in Figure 3.61, though better, is still not optimal.

Figure 3.60: Linear model with corresponding residual plot 



Figure 3.61: Cubic model with corresponding residual plot 

Various goodness-of-fit statistics can be used to corroborate the above graphical methods. 
Some often-used ones are briefly outlined below; others are discussed in Mark and 
Workman (2005c), Mark and Workman (2005b), Mark and Workman (2006). 

• Runs test: 

The runs test is a quantification of the intuitions underlying residual plots. A run is a 
series of consecutive data points that are either all above or all below the regression 
line, that is, whose residuals are all positive or all negative. If the residuals are 
randomly distributed above and below the regression line, then one can calculate the
expected number of runs: where Na of the number of points above the line and Nb 

the number of points below, one expects to see the number of runs given by 

Using this formula 51 runs are expected for 100 data points. The scatter of residuals 
around the line of best fit for Figure 3.59 looks random, and the number of runs, 52, 
confirms this. By contrast, for the data in Figures 3.60 and 3.61, the linear regression 
has only 8 runs and the cubic one 28; the result of the runs test for the cubic 
regression, though still far from optimal, is much closer to what is expected than the 
linear one, and confirms the visual impression from the lines of best fit and the 
residual plots that the cubic fit is the better. 

• Summed square of errors (SSE): 

This measure is also called ‘summed square of residuals’, which clarifies what it is: 
the sum of deviations of the dependent variable values from the line of best fit, 
squared to prevent the positive and negative residuals from cancelling one another. 
This is shown in 

where n is the number of data points, the yi are the actual values of the dependent 

variable, and the ŷi  the corresponding values on the regression line. The smaller the 

SSE the less deviation there is in dependent variable values from the corresponding 
ones on the regression line, and consequently the better the fit. In Figure 3.58 the 
SSE for the linear regression line is 348.6, for the quadratic one 346.2, and for the 
cubic 54.31, which supports the graphical evidence that the cubic is the preferred 
model. 

• Root mean squared error (RMSE): 



This is also known as the standard error of regression, and is the standard deviation 
of the residuals from the regression line, shown in 

where rdf is the residual degrees of freedom, defined as the number n of data points 
minus the number of fitted coefficients c in the regression: rdf = n− c. For the n = 120 
data points in Figure 3.58, the rdf for the linear polynomial model would be 120 − 2, 
for the quadratic model 120 − 3, and for the cubic model 120 − 4. As with SSE, the 
smaller the RMSE the less deviation there is from the regression line, and 
consequently the better the fit. 

• R2 , also known as the coefficient of determination, is a measure of how much of the 
variability of the dependent variable is captured by the regression model, and is 
defined by 

SSE is defined as above, and SST is the sum of squares of y-value deviations from 
their mean 

where Ȳ is the mean of the dependent variable values and yi is the i ' th of those 

values. The SSE / SST term is therefore the ratio of the variability of the dependent 
variable relative to the regression model and its total variability relative to its mean. 

The numerically smaller the ratio, and hence the larger the R2 , the better the fit: if 

the model fits perfectly then there is no residual variability, SSE = 0, and R2 = 1, but if

not SSE approaches SST as the fit becomes less and less good, and R2 approaches
0. 

R2 is a widely used measure of goodness of fit, but discussions of it in the literature 
generally advise that it be so used only in combination with visual inspection of data 
plots. This caution derives from (Anscombe 1973), who presented four data sets, 
both linear and nonlinear, whose plots showed them to be very differently distributed 

but whose statistics, including R2, were identical; on its own, R2 is not a reliable 

indicator of nonlinearity (Mark and Workman 2005c). With this caveat in mind, the R2 
scores for different regression models of a given data set can be compared and the 

best model selected. For Figure 3.58, R2 for the linear regression is 0.803, for the 
quadratic regression it is 0.804, and for the cubic 0.969; the cubic model has the best



score and is corroborated by the scatter plot, and the conclusion on the basis of this 
criterion is again that the data are nonlinear. 

These statistics all look reasonable, but they have an underlying conceptual problem. In 
general, for a given family of models such as polynomials, the model with more parameters 
typically fits the data better than one with fewer parameters; Figure 3.62 shows, for example,
regressions using polynomials of order one, three, six, and nine together with the relevant 
statistics. The greater the number of parameters the more convoluted the line of best fit can 
be and thus the closer it can get to the data values, thereby affecting all the statistics.

Figure 3.62: Polynomial models of increasing order fitted to the same data 

Use of the foregoing statistics for identification of a nonlinear relationship between variables 
implies that the best model is always the one which comes closest to the data points. Where 
the relationship between variables is perfectly linear this is not a problem because increasing
the number of parameters will not affect the statistics: the linear model is optimal. But, as 
already noted, empirical data typically contains noise, and that is where the problem lies. 
Given data that is not perfectly linear and a model for it with n parameters, n > 2, there are 
two possible interpretations. On the one hand, it may be that the model is fitting noise and 
thereby obscuring a relationship between the variables which is better captured by a model 
with fewer than n parameters; this is known as overfitting in the literature – cf., for example, 



Izenman (2008: 13f.). On the other, it may be that the nonlinearity is not noise but a genuine 
reflection of the nonlinear relationship between those aspects of the domain of interest which
the data describes, and that the model with n parameters is the preferred one. Intuition 
based on visual examination of Figure 3.62a tells one that the relationship between variables
x and y is essentially linear with a little noise which is best captured by a linear model with 
two parameters, and that Figures 3.62b–3.62d obscure this by fitting the noise increasingly 
accurately. But is this intuition correct, or are the data really nonlinear as 3.62d indicates? 

Knowledge of the likelihood and scale of noise in the domain from which the data were 
abstracted can help in deciding, but this is supplemented by literature offering an extensive 
range of model selection methods (ibid.: Ch. 5). Two of the more frequently used methods 
are outlined and exemplified here, one based on statistical hypothesis testing and the other 
on information theory. 

• Extra sum-of-squares F-test – cf. Motulsky and Christopoulos (2004: Ch. 22) 

Given two models which belong to the same family such as polynomials, one of 
which has more parameters than the other, this criterion tests the null hypothesis that
the simpler model, the one with fewer parameters, is the correct one. It calculates a 
probability p from (i) the difference between the SSE values of each model, and (ii) 
the complexity of each model, that is, the number of degrees of freedom. If the value 
of p is less than a selected significance level, conventionally 0.05, then the null 
hypothesis is taken to be falsified and the more complex model is taken to fit the data
significantly better than the simpler one; otherwise the conclusion is that there is no 
compelling evidence to support the more complex model, so the simpler model is 
accepted. As Motulsky and Christopoulos (ibid.: 138) note, the result of this test is not
a definitive criterion for model correctness. What the test provides is an indication of 
whether there is sufficient evidence to reject the simpler null hypothesis model and to
adopt the more complex one. For the data in Figure 3.63, for example, p for the linear
model as null hypothesis and the cubic one as alternative hypothesis is 0.37. 
Relative to significance level 0.05, the indication is that the null hypothesis should be 
accepted, or, in other words, that on the available evidence the data should be 
interpreted as essentially linear with added noise. 

• Akaike’s Information Criterion (AIC) – cf. Burnham and Anderson (2002), Motulsky 
and Christopoulos (2004: Ch. 22) 

Given two candidate models, AIC works not by hypothesis testing like the extra sum-
of-squares F-test, but rather uses information theory to calculate the models’ 
probabilities of correctness. The probability that a given model is correct is given by

where e is the entropy of the model and ∆ is the difference in AIC scores between the
two models. When the two AIC scores are identical, both models have a 0.5 
probability of being correct. Otherwise the difference in probabilities can serve as the 
basis for model selection. In the case of the data for Figure 3.62, for example, the 
AIC probability is 0.98 that the linear model is correct and 0.02 that the cubic one is. 



In both cases the data sample from Figure 3.62 is too small for the criteria to be meaningfully
applied, and the examples are given for expository purposes only. 

An alternative to regression is to make the ratio of mean nonlinear to mean linear distances 
among points on the data manifold the basis for nonlinearity identification. This is motivated 
by the observation that the shape of a manifold represents the real-world interrelationship of 
objects described by variables, and curvature in the manifold represents the nonlinear 
aspect of that interrelationship. Linear metrics ignore the nonlinearity and will therefore 
always be smaller than nonlinear ones; a disparity between nonlinear and linear measures 
consequently indicates nonlinearity, and their ratio indicates the degree of disparity. 

The ratio of mean geodesic to mean Euclidean distance between all pairs of nodes in a 
graph gives a measure of the amount of nonlinearity in a data manifold. If the manifold is 
linear then the two means are identical and the ratio is 1; any nonlinearity makes the mean 
of geodesic distances greater than the Euclidean mean, and the ratio is greater than 1 in 
proportion of the degree of nonlinearity. Figure 3.63 gives examples for two-dimensional 
data using the graph-based approximation of geodesic distance described in the foregoing 
discussion of data geometry, though the principle extends straightforwardly to higher 
dimensions. 



Figure 3.63: Comparison of linear and geodesic distance measures for 1-dimensional
manifolds in two-dimensional space 

The linear manifold in Figure 3.63a has a means ratio of 1, 3.63b shows moderate 
nonlinearity with a ratio slightly more than 1, 3.63c shows substantial nonlinearity and a 
correspondingly increased ratio, and 3.63d shows extreme nonlinearity with a ratio much 
larger than those of Figures 3.63a– 3.63c. Figure 3.63 also includes distances and ratios for 
the end-points on each of the manifolds, labelled A and B, for which there is an analogous 
but enhanced progression. 

Figure 3.64 shows an example which is less tidy than those in 3.63 and closer to what one 
might expect from empirical data. It is a version of 3.63d with random noise added, and 
shows the path of the shortest graph distance from A to B. 

Figure 3.64: Randomized version of Figure 3.67d with Euclidean vs. graph distance statistics

Mean Euclidean distance: 11.38 

Mean geodesic distance: 41.91 

Ratio geodesic to Euclidean: 3.68 

Euclidean distance A to B: 18.66 

Geodesic distance A to B: 191.73 

Ratio geodesic to Euclidean A to B: 6.60 

An advantage of the graph-based approach to nonlinearity identification is that it gives a 
global measure of data manifold nonlinearity which is independent of dimensionality. The 
regression-based approach requires analysis of all unique pairings of columns in the data 
matrix, which can be onerous for high-dimensional data, whereas calculation of the 
Euclidean distance matrix and subsequent transformation into a geodesic distance matrix is 
done in a single operation. 



An apparent problem with the graph-based approach is computational tractability. Central in 
theoretical computer science is the study of the intrinsic complexity of computing 
mathematical functions, and in particular the classification of mathematical functions 
according to the time and memory space resources which computation of them requires 
(Arora and Barak 2009; Goldreich 2008, 2010). An important criterion for this classification is
the rate of increase of resource requirements relative to growth in the size of the problem 
that a function models. For some functions the relationship between resource requirements 
and problem size is linear, and computation of them is tractable even for very large 
problems, that is, feasible within reasonable time and space. For others the relationship is 
nonlinear, so that resource requirements grow at a greater rate than problem size, and 
computation becomes disproportionately more time and / or space consuming with 
increasing problem size. In some cases the nonlinearity is such that the computation rapidly 
becomes intractable; classic computations of this last type are the well known Towers of 
Hanoi and Travelling Salesman problems. The complexity of a computation is standardly 
given using the so-called big-O notation whereby, for example, a computation whose 

complexity is described as being O(n2 ) is read as one whose resource requirements 
increase on the order of the square of the size of a problem parameter n. 

Calculation of a minimum spanning tree scales in time as O(elog(v)), where e is the number 
of arcs in the graph and v is the number of nodes (Cormen et al. 2009: Ch. 23); Figure 3.65 
shows the scaling behaviour for a sequence of 200 Euclidean distance matrices derived 
from data matrices containing random values, where the first contains 10 rows / columns 
and each subsequent one is incremented by 10 to give the sequence 10, 20, 30. . . 2000. 
Each Euclidean matrix was interpreted as a complete graph and, for each graph, the 
minimum spanning tree was first calculated using Kruskal’s algorithm (ibid.: 631ff.). The 
geodesic distance matrix between all pairs of nodes was then generated by tree traversal, 
thereby simulating the method for geodesic distance measurement proposed above. 

Figure 3.65: Scaling behaviour of minimum spanning tree calculation and traversal 

The horizontal axis represents the dimensionality of the Euclidean distance matrix and the 
vertical axis the number of seconds required calculate the minimum spanning tree and 
pairwise graph distances for each 10-increment graph. Using a conventional desktop 
computer running Matlab at 2.6 GHz, for the 2000-row / column matrix 10.11 seconds were 



required and, extrapolating, 26.43 seconds are required for 3000, 63.37 seconds for 5000, 
246.22 for 10000, and 1038.81 for 20000. These requirements do not seem excessive, and 
they could easily be reduced by using a faster computer. Eventually, of course, the shape of 
the curve guarantees that execution of the algorithm will become prohibitively time 
consuming for very large matrices. But ‘large’ is a relative concept: in research applications 
involving matrices up to, say, dimensionality 20000 computational complexity is not a 
significant factor in using the proposed approach to nonlinearity identification and graph 
distance calculation. 

A potential genuine disadvantage of the graph distance-based approach is that it does not 
make the distinction between model and noise that the regression-based approach makes, 
and treats the data matrix as a faithful representation of the domain from which the data was
abstracted. Unless the data is noiseless, therefore, the graph distance-based approach 
includes noise, whether random or systematic, in its calculations, which may or may not be a
problem in relation to the application in question. 

Using the graphical and regression-based methods outlined above, no strictly or even 
approximately linear relationships between pairs of variables were found in MDECTE. In a 
relatively few cases the relationships looked random or near-random, but most showed a 
discernible pattern; the pair o: (corresponding to the dialectal pronunciation of the vowel in 
‘goat’) and a: (corresponding to the dialectal pronunciation of the vowel in ‘cold’) is 
representative and is used as the basis for discussion in what follows. 

A scatter plot of o: on the horizontal axis and a: on the vertical in Figure 3.66 shows a 
visually clear nonlinear relationship. 

Figure 3.66: Scatter plot of column values in MDECTE representing the phonetic segments 
o: and a: 

Using o: as the independent variable and a: as the dependent, a selection of polynomials 
was used to model the nonlinear relationship. These are shown in Figure 3.67. 



Figure 3.67: Polynomial regression models of the o: / a: relationship 

Visually, the linear model appears to fit least well and the 5th-degree polynomial best, as 
expected, and this is confirmed by runs tests, residual plots, and the goodness of fit statistics
in Table 3.29. 

Table 3.29: Goodness of fit statistics for Figure 3.67

Table 3.30 contains the results obtained for the extra sum-of-squares F-test, and Table 3.31 
those the AIC test. 

Table 3.30: Extra sum-of-squares F-test for Figure 3.67 



Table 3.31: AIC test for Figure 3.67 

These results further support the indications so far: that the first-order model is worst, that 
second-order is better than the third, but that the fifth-order model is preferred 

The Euclidean 63 × 63 distance matrix E was calculated for MDECTE, the minimum 
spanning tree for E was found, and the graph distance matrix G was derived by tree 
traversal, all as described in the foregoing discussion. The distances were then linearized 
into vectors, sorted, and co-plotted to get a graphical representation of the relationship 
between linear and graph distances in the two matrices. This is shown in Figure 3.68. 

Figure 3.68: Comparison of Euclidean and geodesic distances for MDECTE 

The graph distances between and among the speakers in MDECTE are consistently larger 
than the Euclidean ones over the entire range. This is summarized in the ratio mean(G) / 
mean(E) of mean distances, which is 3.89. On these indicators, MDECTE can be said to 
contain a substantial amount of nonlinearity. 



4. Cluster 

The Introduction described cluster analysis as a family of mathematically-based 
computational methods for identification and graphical display of structure in data when the 
data are too large either in terms of the number of variables or of the number of objects 
described, or both, for them to be readily interpretable by direct inspection. Chapter 2 
sketched how it could be used as a tool for generation of hypotheses about the natural 
process from which the data were abstracted, and Chapter 3 used it to exemplify various 
data issues, in both cases without going into detail on how it actually works. The present 
chapter now provides that detail. 

The discussion is in three main parts: the first part attempts to define what a cluster is, the 
second presents a range of clustering methods, and the third discusses cluster validation, 
that is, the assessment of how well a clustering result has captured the intrinsic structure of 
the data. As in Chapter 3, the MDECTE matrix provides the basis for exemplification, but in a
dimensionality-reduced form. Specifically, dimensionality is reduced to 51 using the variable 
selection method which combines the frequency, variance, vmr and tf−idf selection criteria; 
variable selection rather than extraction was used for dimensionality reduction because the 
original variables will be required for hypothesis generation later in the discussion. 

4.1 Cluster definition 

In cluster analytical terms, identification of structure in data is identification of clusters. To 
undertake such identification it is necessary to have a clear idea of what a cluster is, and this
is provided by an innate human cognitive capability. Human perception is optimized to detect
patterning in the environment (Köppen 2000; Peissig and Tarr 2007), and clusters are a kind 
of pattern. Contemplation of a rural scene, for example, reveals clusters of trees, of farm 
buildings, of sheep. Looking up at the night sky reveals clusters of stars. And, closer to 
present concerns, anyone looking at the data plot in Figure 4.1 immediately sees the 
clusters. 

Figure 4.1: A selection of clusters in two-dimensional space 



A casual observer looking at the scatterplots in Figure 4.1 would say that 4.1a shows a few 
small concentrations of points but is essentially random, that 4.1b has three clearly 
identifiable clusters of roughly equal size, that 4.1c has two clusters of unequal size the 
smaller of which is in the lowerleft corner of the plot and the larger elongated one in the 
upper right, and that 4.1d has two intertwined, roughly semi-circular clusters, all embedded 
in a random scatter of points. That casual observer would, moreover, have been able to 
make these identifications solely on the basis of innate pattern recognition capability and 
without recourse to any explicit definition of the concept ‘cluster’. 

Direct perception of pattern is the intuitive basis for understanding what a cluster is and is 
fundamental in identifying the cluster structure of data, but it has two main limitations. One 
limitation is subjectivity and consequent unreliability. Apart from the obvious effect of 
perceptual malfunction in the observer, this subjectivity stems from the cognitive context in 
which a given data distribution is interpreted: the casual observer brings nothing to the 
observation but innate capability, whereas the researcher who compiled the data and knows 
what the distribution represents brings prior knowledge which potentially and perhaps 
inevitably affects interpretation. In Figure 4.1c, for example, does the larger cluster on the 
upper right contain two subclusters or not? What would the answer be if it were known that 
the points represent cats in the upper part of the cluster and dogs in the lower? The other 
limitation is that reliance on innate perceptual capability for cluster identification is confined 
to what can be perceived, and in the case of data this means a maximum dimensionality of 3
or less for graphical representation; there is no way of perceiving clusters in data with 
dimensionality higher than that directly.

The obvious way to address these limitations is by formal and unambiguous definition of 
what a cluster is, relative to which criteria for cluster membership can be stated and used to 
test perceptually-based intuition on the one hand and to identify non-visualizable clusters in 
higher-dimensional data spaces on the other. Textbook and tutorial discussions of cluster 
analysis uniformly agree, however, that it is difficult and perhaps impossible to give such a 
definition, and, if it is possible, that no one has thus far succeeded in formulating it. In 
principle, this lack deprives cluster analysis of a secure theoretical foundation. In practice, 
the consensus is that there are intuitions which, when implemented in clustering methods, 
give conceptually useful results, and it is on these intuitions and implementations that 
contemporary cluster analysis is built. 

The fundamental intuition underlying cluster analysis is that data distributions contain 
clusters when the data objects can be partitioned into groups on the basis of their relative 
similarity such that the objects in any group are more similar to one another than they are to 
objects in other groups, given some definition of similarity. In terms of the geometric view of 
data on which the present discussion is based, the literature conceptualizes similarity in two 
ways: as distance among objects in the data space, and as variation in the density of objects
in the space. Two quotations from a standard textbook (Jain and Dubes 1988: 1) capture 
these: 

• “A cluster is an aggregation of points in the test space such that the distance 
between any two points in the cluster is less than the distance between any point in 
the cluster and any point not in it”. 

•



•  “Clusters may be described as connected regions of multi-dimensional space 
containing a relatively high density of points, separated from other such regions by a
region containing a relatively low density of points”. 

These distance and density views of similarity may at first sight appear to be a distinction 
without a difference: data points spatially close to one another are dense, and dense regions
of a space contain points spatially close to one another. There is, however, a substantive 
difference, and it corresponds to that between the metric space and topological geometries 
introduced in the discussion of data in the preceding chapter. The distance conceptualization
of similarity uses a metric to measure the proximities of data points relative to a set of basis 
vectors which define the embedding space of the data manifold, whereas the density one 
uses relative proximity of points on the data manifold without reference to an embedding 
space. As we shall see, the difference is important because clustering methods based on 
density are able to identify a greater range of cluster shapes than at least some of the ones 
based on distance in metric space. 

4.2 Clustering methods 

The Introduction noted that a large number clustering methods is available and that only a 
selection of them can be included in the present discussion. It also gave some general 
selection criteria: intuitive accessibility, theoretically and empirically demonstrated 
effectiveness, and availability of software implementations for practical application. The 
discussion has now reached the stage where these criteria need to be applied. 

Clustering methods assign the set of given data objects to disjoint groups, and the literature 
standardly divides them into two categories in accordance with the kind of output they 
generate: hierarchical and nonhierarchical. Given an m × n dimensional data matrix D, 
hierarchical methods regard the m row vectors of D as a single cluster C and recursively 
divide each cluster into two subclusters each of whose members are more similar to one 
another than they are to members of the other on the basis of some definition of similarity, 
until no further subdivision is possible: at the first step C is divided into subclusters c1 and 
c2, at the second step c1 is divided into two subclusters c1.1, c1.2, and c2 into c2.1 c2.2, at 
the third step each of c1.1 c1.2 c2.1 c2.2 is again subdivided, and so on. The succession of 
subdivisions can be and typically is represented as a binary tree, and this gives the 
hierarchical methods their name. Nonhierarchical methods partition the m row vectors of D 
into a set of clusters C = c1, c2..ck such that the members of cluster ci (i = 1... k) are more 

similar to one another than they are to any member of any other cluster, again on the basis 
of some definition of similarity. Both hierarchical and nonhierarchical methods partition the 
data; the difference is that the nonhierarchical ones give only a single partition into k 
clusters, where k is either pre-specified by the user or inferred from the data by the method, 
whereas the hierarchical ones offer a succession of possible partitions and leave it to the 
user to select one of them. Because these two categories offer complementary information 
about the cluster structure of data, examples of both are included in the discussion to follow, 
starting with non-hierarchical ones. 

As might be expected from the foregoing comments, the literature on clustering is vast (Xu 
and Wunsch 2009: 9ff.), and no explicit or implicit pretence that all of it has been consulted is
made. With a very few exceptions, the literature prior to 1988 has not been cited. On the 
face of it this looks arbitrary, but there is method to it. It is the year in which the excellent, still



fundamental, and still extensively referenced book Algorithms for Clustering Data (Jain and 
Dubes 1988) appeared, and it is here taken to be an amalgamation of earlier work sufficient 
for present purposes; for a summary of earlier work on clustering and the state of research 
to 1996, with extensive bibliography, see Arabie and Hubert (1996). Since 1988 several 
textbooks have appeared, of which the following have been used: Everitt’s Cluster Analysis, 
the first edition of which was published in 1974 and which has since then appeared in 
successive editions the most recent of which is Everitt et al. (2011), Kaufman and 
Rousseeuw (1990), Gordon (1999), Gan, Ma, and Wu (2007), Xu and Wunsch (2009), Mirkin
(2013); briefer surveys are Jain, Murty, and Flynn (1999), Xu and Wunsch (2005), Manning, 
Raghavan, and Schütze (2008: Chs. 16-18), Izenman (2008: Ch. 12), Berkhin and Dhillon 
(2009). Because, moreover, cluster analysis is part of the more general field of multivariate 
data analysis and is also an important component in information retrieval and data mining, 
textbooks in these subjects typically contain accounts of it. There was no attempt at 
comprehensiveness here; Berkhin (2006), Tan, Steinbach, and Kumar (2006: Ch. 9), and 
Hair et al. (2010: Ch. 9f.) were found useful. Two preliminary notes: 

1. The literature subcategorizes hierarchical and non-hierarchical methods in accordance 
with the data representation relative to which they are defined: graph-based methods treat 
data as a graph structure and use concepts from graph theory to define and identify clusters,
distributional methods treat data as a mixture of different probability distributions and use 
concepts from probability theory to identify clusters by decomposing the mixture, and vector 
space methods treat data as manifolds in a geometric space and use concepts from linear 
algebra and topology. The discussion of data creation and transformation in the preceding 
chapter was based on vector space representation, and to provide continuity with that 
discussion only vector space clustering methods are included in this chapter. For information
about graph-based methods see Schaeffer (2007), Gan, Ma, and Wu (2007: Ch. 11), Xu and
Wunsch (2009: Ch. 4), and about distributional methods Fraley and Raferty (2002), Gan, 
Ma, and Wu (2007: Ch. 14); there are also clustering methods based on specific classes of 
algorithm such as artificial neural networks and genetic algorithms, for which see Berkhin 
(2006), Gan, Ma, and Wu (2007: Ch. 10). For current trends in clustering see Jain (2010). 

2. A distinction between two types of data categorization needs to be made explicit. One type
assigns data objects to a set of categories known a priori, and is variously called 
‘classification’, ‘discriminant analysis’, and ‘pattern recognition’ in the literature. The other 
type does not use a priori categories but rather infers them from the data, and is referred to 
in the literature as ‘clustering’ or ‘cluster analysis’. Unfortunately there is some inconsistency 
of terminological usage, particularly with respect to ‘classification’ and ‘clustering / cluster 
analysis’. The focus of this book is on hypothesis generation based on discovery of structure
in data. As such it is interested in the second of the above types of categorization and uses 
the terms ‘clustering’ and ‘cluster analysis’ with respect to it throughout the discussion, 
avoiding ‘classification’ altogether to forestall confusion. 

4.2.1 Nonhierarchical clustering methods 

As noted, given m n-dimensional row vectors of a data matrix D, nonhierarchical methods 
partition the vectors into a clustering C consisting of a set of k clusters C = c1 ... ck such that

the members of cluster ci (i = 1... k) are more similar to one another than they are to any 

member of any other cluster. The theoretical solution to finding such a partition is to define 



an objective function f, also called an error function or a criterion function, which measures 
the goodness of a partition relative to some criterion in order to evaluate each possible 
partition of the m vectors into k clusters relative to f, and, having done this, to select the 
partition for which the value of f is optimal. In practice, such exhaustive search of all possible
clusterings for the optimal one rapidly becomes intractable. The rather complex 
combinatorial mathematics of this intractability are discussed in Jain and Dubes (1988: Ch. 
3.3) and summarized in  

where S(n,k) is the number of possible partitions of n objects into k clusters. According to 
this formula, to partition a set of objects into, say, 3 clusters, 10 objects can be clustered in a
relatively moderate 9330 different ways, 20 objects a much more demanding 580606446 
different ways, 30 objects a huge 3.4315e + 13 ways, and our 63 DECTE speakers a truly 
intractable 1.9076e+ 29 ways. Exhaustive search is, in short, not a practical option for 
general partitional clustering, and ways of avoiding it have been developed. Three 
conceptually different approaches are described in what follows: projection clustering, 
proximity-based clustering, and density-based clustering.

Projection clustering 

The dimensionality reduction methods described in the preceding chapter can be used for 
clustering by specifying a projection dimensionality of 2 or 3 and then scatter plotting the 
result. Figure 4.2 shows this for MDECTE using PCA and MDS, with projection 
dimensionality 2 in both cases; speaker labels have been abbreviated and only a selection of
them is shown to avoid clutter. 



Figure 4.2: PCA and MDS projection of MDECTE into two-dimensional space 

Both methods show a clear two-cluster structure, and so do those derived via the other 
dimensionality reduction methods described in the preceding chapter. They all share a 
problem both with respect to MDECTE and to data in general, however: the intrinsic 
dimensionality of the data might be greater than 2 or 3, and simply truncating it to enable the
data to be plotted runs the risk of losing important information and consequently generating 
misleading results. In the case of PCA, for example, the degree of information loss is readily 
seen. Most implementations of it provide a cumulative total of how much variance in the 
original data is captured or ‘explained’ by each successive principal component. In the case 
of Figure 4.2a, the first two components explain only 46.9 percent of the original data 
variance, that is, about half the original information is thrown away, and the first three are a 
little but not much better in that they capture 54.6 percent. If the explained variance had 
been higher, say in the 80–90 percent range, one could have been confident in the reliability 
of the clustering, but under the circumstances it would be unwise to trust the clustering 
results in Figure 4.2. 

An alternative to the dimensionality reduction methods already described is to use a method 
which projects high-dimensional data into a low-dimensional space without reducing the 
dimensionality of the original data. The self-organizing map (SOM) is such a method – an 
artificial neural network that was originally invented to model a particular kind of biological 
brain organization, but that can also be used without reference to neurobiology as a way of 
visualizing high-dimensional data manifolds by projecting and displaying them in low-
dimensional space, and thereby as a cluster analysis method. It has been extensively and 
successfully used for this purpose across a wide range of disciplines, and is for that reason 
described in detail here. 



The following account of the SOM is in five parts: the first part describes its architecture, the 
second exemplifies its use for cluster analysis by applying it to the MDECTE data, the third 
discusses interpretation of the low-dimensional projection which it generates, the fourth 
surveys advantages and disadvantages of the SOM for clustering, and the fifth gives 
pointers to developments of the basic SOM architecture. The standard work on the SOM is 
Kohonen (2001). Shorter accounts are Haykin (1999: Ch. 9), Van Hulle (2000), Lee and 
Verleysen (2007: Ch. 5), Izenman (2008: Ch. 12.5), Xu and Wunsch (2009: Ch. 5.3.3); 
collections of work on the SOM are in Oja and Kaski (1999) and Allinson et al. (2001). For 
overviews of applications of the SOM to cluster analysis and data analysis more generally 
see Kohonen (2001: Ch. 7), Kaski, Nikkila, and Kohonen (2000), and Vesanto and Alhoniemi
(2000). 

A good intuition for how the SOM works can be gained by looking at the biological brain 
structure it was originally intended to model: sensory input systems (Van Hulle 2000), 
(Kohonen 2001: Chs. 2 and 4). The receptors in biological sensory systems generate very 
high dimensional signals which are carried by numerous nerve pathways to the brain. The 
retina of the human eye, for example, contains on the order of 108 photoreceptor neurons 
each of which can generate a signal in selective response to light frequency, and the number

of pathways connecting the retina to the brain is on the order of 106 (Hubel and Wiesel 
2005). At any time t, a specific visual stimulus vt to the eye generates a pattern of retinal 

activation at which is transmitted via the nerve pathways to the part of the brain specialized 
for processing of visual input, the visual cortex, which transmits a transformed version of at 
to the rest of the brain for further processing. It is the response of the visual cortex to retinal 
stimulation which is of primary interest here. The visual cortex is essentially a two-
dimensional region of neurons whose response to stimulation is spatially selective: any given
retinal activation at sent to it stimulates not the whole two-dimensional cortical surface but 
only a relatively small region of it, and activations at+1, at+2 ... similar to at stimulate adjacent

regions. Similar stimuli in high-dimensional input space are thereby projected to spatially 
adjacent locations on a two-dimensional output surface. This is the basis for the SOM’s use 
as a clustering method. 

Figure 4.3a is a graphical representation of what a highly simplified physical model of a 
visual input system might look like. Only a very few retinal and cortical ‘neurons’ are shown. 
Also, only a few connections between ‘retina’ and ‘cortex’ are represented to convey an idea 
of the pattern of connectivity without cluttering the diagram; each of the cells of the ‘retina’ is 
connected to each of the cells in the ‘visual cortex’ so that if the ‘retina’ had, say, 10 cells 
there would be 10 × (7 × 4) = 280 connections, where (7 × 4) are the dimensions of the 
‘cortex’. 



Figure 4.3: A graphical representation of a highly simplified physical model of a biological
visual system 

Sensory stimuli arrive at the ‘retina’ and are propagated via the connections to the ‘cortex’; 
for some activation at, a single neuron is activated in response. If, say, seven activations 

a1 ...a7 are input in temporal succession, and if the members of each of three sets {a1 a3 

a7}, {a2 a5}, and {a4 a6} are similar to one another but different from members of the other 
two sets, then the ‘cortex’ is sequentially activated as shown in Figure 4.3b, and these 
successive activations, when superimposed as they are in 4.3b, show a cluster structure. 

The mathematical model corresponding to the above physical one has three components 
together with operations defined on them: 

• An n-dimensional input vector R, for some arbitrary n, which represents the retina. 

• A p x q output matrix M which represents the sensory cortex, henceforth referred to 
as the lattice. 

• A p x q x n matrix C which represents the connections, where Ci, j,k is the connection 

between the neuron at Mi, j (for i = 1... p, j = 1...q) and the one at Rk  (for k = 1... n). 

Three-dimensional matrices like C have not previously been introduced. They are 
simply a generalization of the familiar two-dimensional ones, and can be 
conceptualized as in Figure 4.4, where the value at any of the cells of the two-
dimensional matrix is not a scalar but a vector: interpreted in terms of 4.4, the 
connection from the third component of the input vector R3 to the output matrix M1,1 

has the value 0.86. 



Figure 4.4: Three-dimensional matrix representation of SOM connections 

For data clustering a SOM works as follows, assuming an m x n data matrix D is given. For 
each row vector Di (for i = 1...m) repeat the following two steps: 

1. Present Di as input to R. 

2. Propagate the input along the connections C to selectively activate the cells of the lattice 
M; in mathematical terms this corresponds to the inner product of R with each of the 
connection vectors at Ci, j . As described earlier, the inner product of two vectors involves 

multiplication of corresponding elements and summation of the products, yielding a scalar 
result. For two vectors v = [a1,a2 ...an] and w = [b1,b2 ...bn] the inner product p is p = a1b1 

+a2b2 +...+anbn. The result of the inner product (R.Ci, j) is stored at Mi, j : Mi, j = (R.Ci, j).

Once all the data vectors have been processed there is a pattern of activations on the lattice 
M, and this pattern is the cluster analysis of the data matrix D. 

Thus far, an important issue has been left latent but must now be addressed. In biological 
systems, evolution combined with individual experience of a structured environment 
determines the pattern of connectivity and cortical response characteristics which implement
the mapping from high-dimensional sensory inputs to a two-dimensional representation. An 
artificially constructed model of such a system must specify these things, but the SOM does 
not do this explicitly. Instead, like other artificial neural network architectures (Haykin 1999), 
it learns them from the characteristics of the input data. This learning mechanism is now 
described. 

In terms of the physical model, SOM learning tries to find a pattern of connection strength 
variation such that similar high-dimensional ‘sensory’ input signals are mapped to spatially 
close regions in the ‘cortex’, that is, so that the similarity relations among the input signals 
are preserved in their low-dimensional representation. In terms of the corresponding 
mathematical model, this can be restated as the attempt to find a set of connection vectors C
such that the inner products of the c ∈ C and the set of input vectors d ∈  D generates in the 
output lattice M a pattern of activation that represents the neighbourhood relations of D with 
minimum distortion. 

Given a set of input vectors D, SOM learning is a dynamic process that unfolds in discrete 
time steps t1,t2 ...tp, where p is the number of time steps required to learn the desired 

mapping. At each time step ti , a vector dj ∈  D is selected, usually randomly, as input to the 

SOM, and the connection strength matrix C is modified in a way that is sensitive to the 
pattern of numerical values in dj . At the start of the learning process the magnitude of 

modifications to C is typically quite large, but as the SOM learns via the modification process
the magnitude decreases and ultimately approaches 0, at which point the learning process is
stopped – the p’th time step, as above. The question, of course, is how exactly the input-
sensitive connection strength modification works, and the answer involves looking at the 
learning algorithm in detail. At the start of learning, the SOM is parameterized with user-
specified values: 



• Dimensionality of the input vectors R. This is the same as the dimensionality of the 
data to be analyzed. 

• Dimensionality and shape of the output lattice M. In theory the output lattice can have
any dimensionality and any shape, though in practice its dimensionality is usually 2 
and its shape is usually rectangular or hexagonal. There is evidence that lattice 
shape can affect the quality of results (Ultsch and Herrmann 2005); 2-dimensional 
rectangular or hexagonal lattices are assumed in what follows. 

• Size of the output lattice M. This is the number of cells in M. 

• The following further parameters are explained below: neighbourhood shape, initial 
neighbourhood size, neighbourhood decrement interval, initial learning rate, and 
learning rate decrement size and interval. 

In addition, the values in the connection matrix C are initialized in such a way that they are 
non-uniform; uniform connections would preclude the possiblity of learning. This initialization 
can be random or can use prior information which allows the SOM to learn more quickly 
(Kohonen 2001: Chs. 3.2 and 3.7). Thereafter, at each time step ti , the following algorithm is

applied until the stopping criterion is met. 

1. An input vector dk ∈  D is selected. 

2. The propagation of the input signal through the connections to the lattice in the physical 
SOM is represented as the inner product of dk and the connection vector Ci, j for each unit of

the lattice. The result of each inner product is stored in the corresponding cell of the lattice 
matrix Mi, j , as above. Once all the inner products have been calculated, because the 

connections strengths in C were initialized to be non-uniform, the result is a non-uniform 
pattern of activation across the matrix. 

3. The lattice matrix M is now searched to identify the cell with the largest numerical 
activation value. We shall call this cell ui j, where i and j are its coordinates in the lattice. 

4. The connection strengths in C are now updated. This is the crucial step, since it is how the
SOM learns the connections required to carry out the desired mapping. This update 
proceeds in two steps: 

a) Update of the connections linking the most highly activated cell ui j in M to the 

input vector dk. This is done by changing the connection vector associated with ui j 

according to 

where

 – t denotes the current time step. 

– Ci, j,k(t + 1) is the new value of the kth element of the connection vector. 



– Ci, j,k(t) is the current value of the kth element of the connection vector. 

– l(t) is the learning rate, a parameter which controls the size of the modification to 
the connection vector. More is said about this below. 

– (dk −Ci j) is the difference between the current input vector and the connection 

vector. This difference is the sum of element-wise subtraction: ∑1...k (dk −Ci, j,k), 

where k is the length of the input and connection vectors. 

In essence, therefore, the update to the connection vector Ci j associated with the 

most active cell ui j is the current value of Ci j plus some proportion of the difference 

between Ci j and the input vector, as determined by the learning rate parameter. The 

effect of this is to make the connection vector increasingly similar to the input vector. 
Figure 4.5 gives an example for some dk and associated Ci j.

Before update the input and connection vectors differ significantly; to make this 
clearer the difference between vectors is shown as differences in grey-scale 
components in Figure 4.5. After the first update, the connection vector has moved 
closer to the input vector. This update in turn means that, the next time the particular 
input vector dk is loaded, the inner product of dk and Cij and thus the activation of Mij 

will be even greater; ultimately the input and connection vectors will be much more 
similar than they were at the outset of training. In this way, dj is associated ever more

strongly with a particular unit on the lattice. 

Figure 4.5: Convergence of input and connection vectors by learning 

(b) Update of the connections linking cells in the neighbourhood of uij to the input. It 

is not only the connections associated with the most-activated uij that are modified. 

The connections associated with the cells in the neighbourhood of uij are also 

modified in the way just described, though the degree of modification decreases with 
distance from uij. Figure 4.6a shows a 12×12 SOM lattice on which the most active 



cell uij is shown black, and those in its neighbourhood are shown as numerals 

indicating distance from it. 

Figure 4.6: Neighbourhood of activation around a most-activated unit uij 

Reference has been made in this step to learning rate and neighbourhood, and, earlier in the
discussion, to the need to initialize these as parameters for the learning process. How are 
appropriate initial parameter values determined? At present, the answer is that there is no 
theoretically reliable and universally-applicable way of doing so. There are, however, rules of
thumb which have been found to work well in a large number of applications and which can 
be used as a starting point for determining values by trial and error which, in any given 
application, yield good results (Kohonen 2001: Chs. 3.7 and 3.13). If the initial 
neighbourhood size is too small, for example, the lattice will not be globally ordered relative 
to the input data, so it is best to specify a large neighbourhood, and if the initial learning rate 
is too small the SOM learning procedure will be very slow, so it is best to specify a large 
learning rate. 

5. At appropriate intervals, decrease the size of the neighbourhood and of the learning rate, 
and return to step 1. Specification of values for the decrement interval and the size of the 
decrement for both are part of the SOM initialization, as noted, and as with initial 
neighbourhood size and learning rate are determined heuristically, guided by rules of thumb. 

As learning proceeds, the size of the neighbourhood and the learning rate are gradually 
reduced and approach zero, and changes to the connections slow commensurately. When 
the magnitude of these connection changes reaches some predefined threshold, the 
procedure is terminated. How many learning cycles are required? Again, there is no general 
answer. Much depends on the nature of the data input to the SOM, and rules of thumb give 
some guidance; for example, Kohonen (ibid.: 112) notes that, for good statistical accuracy, 
the number of steps should be at least 500 times the number of cells in the lattice, and 
observes that, in his simulations, up to 100,000 cycles have been used.

Summarizing, the SOM’s representation of high dimensional data in a low-dimensional 
space is a two-step process. The SOM is first trained using the vectors comprising the given 



data. Once training is complete all the data vectors are input once again in succession, this 
time without training. The aim now is not to learn but to generate the two-dimensional 
representation of the data on the lattice. Each successive input vector activates the unit in 
the lattice with which training has associated it together with neighbouring units, though to an
incrementally diminishing degree; when all the vectors have been input, there is a pattern of 
activations on the lattice, and the lattice is the representation of the input manifold in two-
dimensional space. 

A SOM with a 11×11 output lattice and random initialization of the connections was used to 
cluster MDECTE, and the results are shows in Figure 4.7. The label in any given cell 
indicates that that cell was most strongly activated by the data vector associated with the 
label; DECTE labels have again been abbreviated to avoid clutter. 

Figure 4.7: SOM clustering of MDECTE 

The row vectors of MDECTE are unevenly distributed on the lattice, and visual inspection of 
the distribution should now reveal any cluster structure, but a problem with the distribution is 
immediately apparent: where are the cluster boundaries? Figure 4.8 shows two possible 
partitions, but there are also other plausible ones. 



Figure 4.8: Possible cluster boundaries for MDECTE 

Which of these two, if either, is the preferred interpretation of the layout of vector labels on 
the lattice? Without further information there is no way to decide: the lattice gives no clear 
indication where the cluster boundaries might be. The eye picks out likely concentrations, 
but when asked to decide whether a given data item is or is not part of a visually-identified 
cluster, one is often at a loss. An apparent solution is to fall back on knowledge of the subject
domain as a guide. But using a priori knowledge of the data to disambiguate the lattice is not
a genuine solution, for two reasons. Firstly, it misses the point of the exercize: the lattice is 
supposed to reveal the structure of the data, not the other way around. And, secondly, the 
structure of large, complex, real-world data sets to which the SOM is applied as an analytical
tool is not usually recoverable from mere inspection – if it were, there would be little point to 



SOM analysis in the first place. To be useful as an analytical tool, the SOM’s representation 
of data structure has to be unambiguously interpretable on its own merits, and the problem is
that an activation lattice like that in the above figures does not contain enough information to
permit this in the general case. The problem lies in the subjectivity of visual interpretation 
with which this chapter began: humans want to see pattern, but the pattern any individual 
sees is determined by a range of personal factors and, among researchers, by degrees of 
knowledge of the domain which the lattice represents. Some objective interpretative criterion
is required, and this is what the following section provides.

 Actually, the problem is even worse than it looks. When a SOM is used for cluster analysis, 
inspection of the pattern of activation on the lattice can not only be subjective but can also 
be based on a misleading assumption. There is a strong temptation to interpret the pattern 
spatially, that is, to interpret any groups of adjacent, highly activated units as clusters, and 
the distance between and among clusters on the lattice as proportional to the relative 
distances among data items in the high-dimensional input space, as with, for example, 
MDS . That temptation needs to be resisted. The SOM differs from these other methods in 
that the latter try to preserve relative distance relations among objects on the data manifold, 
whereas the SOM tries to preserve the manifold topology, that is, the neighbourhood 
relations of points on the manifold – cf. Kaski (1997), Verleysen (2003), Lee and Verleysen 
(2007: Ch. 5). To see the implications of this for cluster interpretation of the output lattice, 
some additional discussion of the SOM learning algorithm is required. 

We have seen that each lattice cell has an associated vector which represents its 
connections to the input vector. Since the dimensionality of the connection vectors is the 
same as that of the inputs, and the dimensionality of the inputs is that of whatever n-
dimensional input space is currently of interest, the connection vectors are, in fact, 
coordinates of points in the n-dimensional space. Assume that there is a data manifold in the
input space and that the connection vectors have been randomly initialized. In this initial 
state, there is no systematic relationship between the points specified by the set of 
connection vectors and the surface of the manifold. By incrementally bringing the connection
vectors closer to training vectors taken from the data manifold, a systematic relationship is 
established in the sense that the connection vectors come to specify points on the manifold; 
at the end of training, the connection vectors map each of the points on the manifold 
specified by the training vectors to a particular lattice cell. Moreover, it can and usually does 
happen that data vectors which are close together on the manifold activate the same unit uij,

as described earlier. In this case, the connection vector for uij has to be brought closer not 

only to one but to some number k of input vectors. Since these k vectors are close but not 
identical, the SOM algorithm adjusts the connection vector of uij so that it becomes a kind of 

average vector that specifies a point on the manifold which is intermediate between the k 
input vectors. In this way, uij becomes associated not only with a single point on the data 

manifold, but with an area of the manifold surface containing the k vectors that map to it. 
This is shown in Figure 4.9, where the shape on the left is a manifold and the square on the 
right is intended to represent the way in which a SOM trained on this manifold partitions its 
surface: each dot represents an ‘average’ vector in the above sense associated with a 
specific lattice unit uij, and the lines enclosing a dot represent the boundaries of the area of 

the manifold containing the k vectors that map to uij. 



Figure 4.9: Voronoi tesselation of a manifold surface 

Mathematically: 

• The process of finding an ‘average’ vector, or ‘centroid’, which is intermediate 
between k vectors was described in Chapter 2 and is known as vector quantization: 
for a set V of k vectors, find a ‘reference’ vector vr of the same dimension as those in 

V such that the absolute difference d = |vr −vi | between each vi ∈V and vr is 

minimized. The SOM training algorithm quantizes the input vectors, and the 
connection vectors are the result – cf. Ritter, Martinetz, and Schulten (1992: Ch. 14), 
Van Hulle (2000: Ch. 2), Kohonen (2001: 59f.). 

• The partition of a manifold surface into areas surrounding reference vectors is a 
tesselation. The SOM algorithm implements a particular type, the Voronoi 
tesselation , in which a reference vector is the centroid, and the area of k associated 
vectors surrounding the centroid is a neighbourhood; the neighbourhood of a given 
reference vector vr in a Voronoi tesselation is defined as the set of vectors closer to 

vr than to any other reference vector (ibid.: 59f.). 

• The set of neighbourhoods defined by the Voronoi tesselation is the manifold’s 
topology, as discussed in the preceding chapter. 

• And because, finally, the SOM algorithm adjusts the connection vector not only of the
most-activated unit uij but also of units in a neighbourhood of gradually diminishing 

radius, it ensures that adjacent manifold neighbourhoods map to adjacent lattice 
units.

How does all this relate to cluster interpretation of a SOM lattice? As noted, a Voronoi 
tesselation is an instance of a topology, that is, a manifold and a discrete collection of 
subsets of points on the manifold called neighbourhoods. When it is said that a SOM 
preserves the topology of the input space, what is meant is that it represents the 



neighbourhood structure of a manifold: when data is input to a trained SOM, the vectors in a 
given Voronoi neighbourhood are mapped to the same lattice cell, and the vectors in 
adjoining Voronoi neighbourhoods are mapped to adjacent lattice cells. The result of this 
topology preservation is that all vectors close to one another in the input space in the sense 
that they are in the same or adjoining neighbourhoods will be close on the SOM output 
lattice. 

The problem, though, is this: just because active cells are close together on the SOM lattice 
does not necessarily mean that the vectors which map to them are topologically close in the 
input space. This apparently-paradoxical situation arises for two reasons – see discussion in,
for example, Ritter, Martinetz, and Schulten (1992: Ch. 4). 

1. The topology of the output manifold to which the SOM maps the input one must be fixed in
advance. In the vast majority of applications the SOM output topology is a two-dimensional 
plane, that is, a linear manifold, with rectangular or hexagonal neighbourhoods which are 
uniform across the lattice except for at the edges, where they are necessarily truncated. 
There is no guarantee that the intrinsic dimensionality of the input manifold is as low as two, 
and therefore no guarantee that the output topology will be able to represent the input 
manifold well. In theory, the SOM is not limited to two-dimensional linear topology, and 
various developments of it, cited later, propose other ones, but where the standard one is 
used some degree of distortion in the lattice’s representation must be expected – cf. 
Verleysen (2003), Lee and Verleysen (2007: Ch. 5); the projection is optimal when the 
dimensionality of the lattice is equal to the intrinsic dimensionality of the data. 

2. The dynamics of SOM training do not at any stage use global distance measures. The 
mapping from input to output space depends entirely on local neighbourhood adjacency. As 
such, the SOM cannot be expected consistently to preserve proportionalities of distance 
between individual vectors and vector neighbourhoods. 

As a result, the SOM may squeeze its representation of the input topology into the lattice in 
such a way that units associated with centroids which are far apart on the input manifold 
may nevertheless be spatially close to one another in the lattice. 

How can a SOM lattice be interpreted so as to differentiate cells which are spatially close 
because they are topologically adjacent in the input space and therefore form a cluster, and 
cells which are spatially close but topologically more or less distant in the input space? The 
answer is that it cannot be done reliably by visual inspection alone; interpretation of a SOM 
lattice by visual inspection is doubly unreliable – a subjective interpretation of an ambiguous 
data representation. 

This is a well known problem with SOMs Kohonen (2001: 165), and a variety of ways of 
identifying cluster boundaries on the SOM lattice have been proposed; see for example 
Kaski (1997), Kaski, Nikkila, and Kohonen (2000), Vesanto (1999), Vesanto (2000), Merkl 
(1997), Merkl and Rauber (1997b), Merkl and Rauber (1997a), Rauber and Merkl (1999), 
Vesanto and Alhoniemi (2000), Kohonen (2001: Ch. 2.15), Pampalk, Rauber, and Merkl 
(2002), Pölzlbauer, Rauber, and Dittenbach (2005c), Pölzlbauer, Rauber, and Dittenbach 
(2005b), Pölzlbauer, Rauber, and Dittenbach (2005a). The most widely used one is the U-
matrix – cf. Ultsch (2003a) and Ultsch and Siemon (1990) –, described in what follows.



The U-matrix representation of SOM output uses relative distance between reference 
vectors to find cluster boundaries. Specifically, given an m × n output lattice M, the Euclidean
distances between the reference vector associated with each lattice cell Mij (for i = 1..m, j = 

1... n) and the reference vectors of the immediately adjacent cells Mi−1,j , Mi+1,j , Mi,j−1, and 

Mi,j+1 are calculated and summed, and the result for each is stored in a new matrix Uij 

having the same dimensions as M. If the set of cells immediately adjacent to Mij is 

designated as Madjacent(i,j) , and d represents Euclidean distance, then

U is now plotted using a colour coding scheme to represent the relative magnitudes of the 
values in Ui,j . Any significant cluster boundaries will be visible. Why? The reference vectors 

are the coordinates of the centroids of the Voronoi tesselation of the data manifold and thus 
represent the manifold’s topology, as we have seen. Where the sum of distances between 
the reference vector associated with Mij and those associated with Mad jacent(i j) is small, the

distance between those centroids on the manifold is small; conversely, a large sum indicates
a large distance between centroids on the manifold. Low-magnitude regions in U thus 
represent topologically close regions on the manifold, and high-magnitude ones topologically
distant regions on the manifold. Assuming a grayscale colour coding scheme, therefore, 
clusters appear on the lattice as regions containing dark gray cells, and boundaries between 
clusters as regions containing light gray or white ones, or vice versa. Consider, for example, 
the U-matrix representation of the SOM lattice for the trivial data in Table 4.1. 

Table 4.1: A trivial data matrix used to exemplify the U-matrix representation 

A SOM with an 11× 11 lattice was trained on these data, with the result that the four row 
vectors in Table 4.1 are mapped to the four corners of the lattice in Figure 4.10.



Figure 4.10: SOM lattice of data set in Table 4.1 

The U-matrix representation using grayscale colour coding to represent variation in 
magnitude is shown in Figure 4.11: Figure 4.11a shows the lattice partitioning directly from 
above using only the grayscale variation to demarcate cluster boundaries, and 4.11b shows 
a rotation of it which uses the relative numerical magnitudes underlying the map to give a 
topographic view. 

Figure 4.11: U-matrix representation of the SOM lattice in Figure 4.10 

Figure 4.12 applies the U-matrix representation to disambiguate the MDECTE lattice of 
Figure 4.7, and shows the essentially two-cluster structure already encountered with the 
foregoing projection methods, whereby n01-07 cluster against g01-56. 



Figure 4.12: U-matrix representation of the SOM lattice for MDECTE in Figure 4.7 

Software implementations of the SOM typically provide graphical enhancements of the U-
matrix display. The two-dimensional grid can, for example, be plotted as a three-dimensional
landscape in which the valleys are clusters and the mountains are boundaries separating 
them, as above. For such enhancements see: Vesanto (1999), Vesanto (2000), Vesanto and
Alhoniemi (2000). The U-matrix has also been further developed, for which see: Ultsch 
(2003b) and Ultsch and Mörchen (2005). 

The SOM has three major advantages for cluster analysis. The first and most important is 
that it takes account of data nonlinearity in its projection: because the Voronoi tesselation 
follows the possibly-curved surface of the data manifold and the neighbourhood relations of 
the tesselation are projected onto the output lattice, the SOM captures and represents any 
nonlinearities present in the structure of the manifold. The second is that, unlike most other 
clustering methods, the SOM requires no prior assumptions about the number and shapes of
clusters: clusters on the SOM lattice represent relative densities of points, that is, of clusters 
in the input manifold, whatever their number and shape – see: Haykin (1999: 454ff.), Van 
Hulle (2000: 72ff.), Kohonen (2001: 152ff.)). And, thirdly, the computational time complexity 
of SOM learning scales linearly with the number of input vectors and quadratically with the 
number of lattice units – cf. Vesanto (2000), Vesanto and Alhoniemi (2000), Hämäläinen 
(2002)), which is better than other, more computationally demanding methods like some of 
those discussed subsequently. Perhaps inevitably, however, the SOM also has drawbacks: 

• The default lattice structure, the linear two-dimensional rectangular grid, restricts its 
ability to represent data manifolds having nonlinear shapes and intrinsic 
dimensionalities higher than 2 without topological distortion; the foregoing discussion 
of lattice interpretation shows the consequence of this for SOM-based cluster 
analysis. 

• There is no theoretical framework within which initial values for the fairly numerous 
SOM parameters can be chosen. Empirical results across a large number of 
applications have shown that, when parameter values which are ‘sensible’ in relation 
to existing rules of thumb are selected, the choice is not crucial in the sense that the 
SOM usually converges on identical or similar results for different initializations. This 
is not invariably the case, however, and different combinations, in particular different 
initializations of the Voronoi centroids and differences in the order of presentation of 
the training vectors can and do generate different clusterings – cf. Kaski (1997), 
Cottrell, Fort, and Pages (1998), Cottrell, Bodt, and Verleysen (2001), De Bodt, 
Cottrell, and Verleysen (2002a). This implies that the result from any single 
configuration of initial values is not guaranteed to be optimal or even acceptable. 
Multiple trials using different initializations for the same data are therefore required, 
followed by selection of the best result. As has just been noted, however, selection of 
the best result is problematical. 

• The training algorithm does not optimize an objective function in the way that MDS, 
Sammon’s Mapping, and Isomap do – cf. Cottrell, Fort, and Pages (1998), Heskes 
(1999), Kohonen (2001: 148, 356f.), and it has in fact been proven (Erwin, 
Obermayer, and Schulten 1992) that such an objective function cannot exist. This 



makes assessment of the goodness of any given SOM lattice difficult; more is said 
about this in due course. 

• There is no general guarantee that the training algorithm will converge to a stable 
result. 

Numerous developments of the basic SOM described above have been proposed to address
specific limitations – see Kaski (1997), Vesanto (2000), Kohonen (2001: Ch. 5) Lee and 
Verleysen (2007: 142f.), Xu and Wunsch (2009: Ch. 5.3.4)). The main ones are briefly 
surveyed here. 

• Lattice structure: The foregoing discussion has noted that the default SOM lattice 
structure, the linear two-dimensional rectangular grid, restricts its ability to represent 
data manifolds of higher intrinsic dimensionality and nonlinear shape directly without 
topological distortion. One type of development addresses this restriction by 
proposing more flexible lattice structures which can better represent the input 
topology – cf. Fritzke (1999), Kaski (1997), Kohonen (2001: Ch. 5), Vesanto (2000), 
Lee and Verleysen (2007: 142f.) –, and more specifically to alter the shape of the 
lattice as learning proceeds. Some of the many such proposals are: Growing Cell 
Structures (Fritzke 1993), Growing Grid (Fritzke 1995), Growing SOM (Bauer and 
Villmann 1997), Hierarchical SOM (Blackmore and Miikkulainen 1995), Growing 
Hierarchical SOM (Rauber, Merkl, and Dittenbach 2002), and Neural Gas (Martinetz, 
Berkovich, and Schulten 1993). 

• Theoretical tractability: The Generalized Topographic Mapping (GTM) has been 
proposed by Bishop, Svensen, and Williams (1998) to address the theoretical 
limitations of the SOM, and is intended as a mathematically principled replacement 
for it. GTM is a nonlinear latent variable model, and so is based on the idea that the 
n observed variables in data describe a natural process which is equally or almost 
equally well described by a smaller number k of variables, where k < n; another latent
variable model, factor analysis (FA), was briefly described in the preceding chapter. 
GTM goes a step further than FA, however, in hypothesizing a probability density 
model for the lower-dimensional process and relating the higher-dimensional 
observed data to that model. Details of how GTM works are given in Bishop, 
Svensen, and Williams (ibid.); for present purposes the important thing to note is that 
it is trained by optimizing an objective function, that the algorithm is guaranteed to 
converge to the objective function, and that statistical methods can be used to 
identify suitable initial parameter values for the model. Clustering results from the 
GTM and the SOM are typically very similar, which is unsurprising given their close 
similarity. What the GTM offers, however, is on the one hand an understanding of 
results in terms of a well developed probability theory, and on the other an objective 
measure for assessing the goodness of those results. 

• Finally, a fairly recent development of projection clustering must be mentioned: 
subspace clustering. The foregoing discussion of dimensionality reduction has 
described linear and nonlinear ways of reducing data of observed dimensionality n to 
an approximation of its intrinsic dimensionality k, where k is less than n. This 
assumes that all the data objects are best described using the same number k of 
latent variables, which is not necessarily the case. Subspace clustering groups 



variables in accordance with the optimal number of latent variables required to 
describe them, or, put another way, of the i-dimensional subspace (for i = 1...n) of the
original n-dimensional data space in which they are embedded. This approach to 
clustering has in recent years found extensive application in areas like computer 
vision, motion segmentation, and image processing, and there is now a substantial 
literature devoted to it. Recent surveys are available in Parsons, Hague, and Liu 
(2004), Agrawal et al. (2005), Gan, Ma, and Wu (2007: Ch. 15), Kriegel, Kröger, and 
Zimek (2009), and Vidal (2011). 

Proximity-based clustering 

Nonhierarchical proximity-based approaches treat clustering as a mathematical optimization 
problem, where only a small subset of all possible partitions is examined in the hope of 
finding the optimal one. An initial k-cluster partition is defined and an iterative procedure is 
used in which, at each step, individual data points are moved from cluster to cluster to form a
new partition and the result is evaluated in relation to the objective function f : if the value of f
shows an improvement over the preceding one the new partition is retained, and if not it is 
discarded and another one is tried. Such iterative procedures are widely used and are 
known as gradient descent or gradient ascent procedures depending on whether optimality 
of the objective function is defined by a minimum or maximum value. Ideally, the procedure 
will gradually converge on a partition for which no change leads to an improvement in the 
value of f, at which point the partition is taken to be optimal. This assumption does not 
always hold, however, because gradient procedures can and often do converge on local 
maxima or minima, that is, where further iteration produces no improvement in the value of f 
but the true maximum or minimum has not been reached. Figure 4.13 shows this for gradient
descent.  

Figure 4.13: Gradient descent with local minimum 

If the gradient descent procedure enters a local minimum it cannot escape and the objective 
function value will be a local optimum; the obverse is the case for gradient ascent. There are
ways of escaping local minima, and they can be applied when necessary. The difficulty lies 
in knowing when it is necessary; anyone using this type of optimization must always be 
aware of the possibility that the supposedly optimal clustering is not in fact so. 

Since it was first proposed in the mid-1960s (Forgy 1965), k-means clustering has become 
the most frequently used proximity-based non-hierarchical clustering method. The first part 
of the following account describes the standard k-means algorithm, the second identifies its 



main advantages and some problems associated with it, the third applies it to the MDECTE 
data, and the fourth outlines developments of the standard algorithm. Because it has been 
and continues to be so widely used, k-means is discussed in greater or lesser detail in 
virtually all cluster analysis, multivariate analysis, and data mining textbooks: for example 
Jain and Dubes (1988: Ch. 3.3), Jain, Murty, and Flynn (1999), Berkhin (2006), Xu and 
Wunsch (2005: Ch. 4.3), Tan, Steinbach, and Kumar (2006: Ch. 8), Gan, Ma, and Wu (2007: 
Ch. 9), Xu and Wunsch (2009: Ch. 4.3), Mirkin (2011: Ch. 6.2), and Mirkin (2013: Ch. 3). 

K-means is based on the idea that, for a given set of data objects O, each cluster is 
represented by a prototype object, and a cluster is defined as the subset of objects in O 
which are more similar to, or in distance terms closer to, the prototype than they are to the 
prototype of any other cluster. An objective function is used find a set of clusters each of 
which optimally meets this criterion. For a data set O comprising m n-dimensional data 
points, O is partitioned into k prototype-centred clusters by the following iterative procedure: 

1. Initialize the procedure by selecting k n-dimensional prototype locations in the data space;
these can in principle be anywhere in the space, so that they might correspond to data 
points but need not. The prototypes are the initial estimate of where the clusters are centred 
in the space, and their locations are refined in subsequent steps. Placement of initial 
prototypes and selection of a value for k, that is, of the number of required clusters, is 
problematical, and is further discussed below. 

2. Assign each of the m data points to whichever of the k prototypes it is closest to in the 
space using a suitable proximity measure. This yields k clusters. 

3. Calculate the centroid of each of the k clusters resulting from (2). Each centroid becomes 
a new cluster prototype. 

4. Repeat (2) and (3) until the objective function is optimized, that is, until the centroids stop 
changing their locations in the space. 

This procedure is visualized in Figure 4.14 for 30 data points in two-dimensional data space, 
though it extends straightforwardly to any dimensionality. There are three visually obvious 
clusters, labelled A – C, and the object is for the above procedure to find them by identifying 
the cluster centroids in a way that optimizes the objective function. 



Figure 4.14: Identification of clusters using the k-means procedure 



Figure 4.14a shows a scatter plot of the 30 data points and k = 3 prototypes randomly 
selected in the space and represented as crosses. The data points are assigned to their 
nearest prototypes, which results in the clusters indicated by the rectangles in Figure 4.14b. 
Cluster centroids are now calculated; their positions, shown in 4.14c, reflect the means of 
the data points in the clusters of 4.14b, and they become the new prototypes. Because the 
positions of the prototypes have changed, so does the clustering, as shown in 4.14d. The 
cluster centroids are once again calculated; their new positions are shown in 4.14e and the 
associated clustering in 4.14f. Further iterations will not change the positions of the 
centroids, and the procedure terminates. The data points associated with the final prototypes
correspond to the visually-identifiable clusters in Figure 4.14a, and the k-means procedure 
can therefore be claimed to have partitioned the data set into three disjoint subsets. The 
further claim is that, for k = 3, the partition is optimal in the sense that it has minimized an 
objective function. Where Euclidean distance is used, this function is usually the sum of 
squared errors (SSE), described earlier and defined as

where x is a data point, Ci is the i’th of k clusters, and pi is the prototype of the i’th cluster. 

This expression says that the SSE is the sum, for all k clusters, of the Euclidean distances 
between the cluster prototypes and the data points associated with each prototype. For k-
means to have optimized this function, the prototypes have to be placed in the data space 
so that the Euclidean distances between them and their associated data points is globally 
minimized across all clusters. It is easy to see that this is what k-means does: the procedure 
converges on stable cluster centroids, and a centroid is by definition the minimum distance 
from the all the points on which it is based. 

Use of k-means is not restricted to Euclidean distance, though this is the most frequently 
used measure. A variety of different measures an associated objective functions can be 
used. For example, cosine similarity might be more appropriate for some kinds of data, and 
in that case a different objective function shown below, Total Cohesion, can be used instead 
of SSE: 

Cosine similarity is an attractive alternative to Euclidean distance when the data have not 
been normalized, as described earlier, because by basing proximity measurement solely on 
the angles between pairs of vectors the magnitudes of vector values (or, equivalently, vector 
lengths) are eliminated as a factor in clustering. The implication of using cosine similarity, 
however, is that vector length doesn’t matter. There are undoubtedly applications where it 
does not, in which case cosine proximity is the obvious alternative to data normalization, but 
there are also applications where it does. With respect to MDECTE, for example, use of 
cosine proximity implies that all phonetic segments, from very frequent to very infrequent, 
are equally important in distinguishing speakers from one another, but as the foregoing 
discussion of data has argued, a variable should in principle represent something which 



occurs often enough for it to make a significant contribution to understanding of the research
domain. The frequent segments in the DECTE interviews are prominent features which any 
attempt to understand the phonetics of Tyneside speech must consider, whereas the very 
infrequent ones tell one little about Tyneside speech and may well be just noise resulting 
from speaker mispronunciation or transcription error. Cosine proximity measurement 
eliminates the distinction, and is therefore unsuitable in this application. This observation 
applies equally to the use of cosine proximity measurement with other clustering methods as
an alternative to measures which take vector magnitude into account. 

Relative to the selection criteria for inclusion in this discussion, k-means is a prime 
candidate: it is intuitively accessible in that the algorithm is easy to understand and its results
are easy to interpret, it is theoretically well founded in linear algebra, its effectiveness has 
repeatedly been empirically demonstrated, and computational implementations of it are 
widely available. In addition, 

• Its computational time complexity grows with data space size as O(nkdt), where n is 
the number of data vectors, k is the number of clusters, d is the data dimensionality, 
and t is the number of iterations. This means that k-means essentially grows linearly 
with data size, unlike other clustering methods to be considered in what follows, and 
is therefore suitable for clustering very large data sets in reasonable time – cf. Jain, 
Murty, and Flynn (1999), Manning, Raghavan, and Schütze (2008: Ch. 16.4), Xu and 
Wunsch (2009: Ch. 4.3). 

• It is guaranteed to converge on a solution, though on this see further below 

The procedure of k-means also has several well known problems, however. 

• Initialization. 

K-means requires two user-supplied parameter values: the number of clusters k and 
the locations of the k initial centroids c1 ... ck in the data space. These values 

crucially affect the clustering result. On the one hand, if the value chosen for k is 
incompatible with the number of clusters in the data, then the result is guaranteed to 
mislead because k-means will deliver k clusters whatever the actual number of 
clusters intrinsic to the data, including none. For example, Figure 4.15 shows the 
cluster structure from Figure 4.14, but with k = 2 and k = 4: in both cases k-means 
fails to identify the visually-obvious cluster structure. 



Figure 4.15: k-means cluster solutions for k = 2 and k = 4 

On the other hand, different sets of initial prototypes can lead to different final ones, 
and thereby to different partitions of the data into clusters. In Figure 4.16 initial 
prototypes are shown as asterisks and final ones as crosses; given the correct k= 3, 
one prototype initialization led to a clustering compatible with visual intuition, and the 
other did not. 

Figure 4.16: Effect of initial prototype location on k-means cluster solutions 

Various ways of selecting an initialization compatible with the intrinsic cluster 
structure of the data exist. The obvious one is to base the initialization on reliable a 
priori knowledge of the domain from which the data comes, where available. Failing 
this, a projection clustering method can be used to visualize the data and thereby to 
gain some insight into its cluster structure, or one of the range of initialization 
heuristics proposed in the literature can be applied (Xu and Wunsch 2009: Ch. 4.3; 
Mirkin 2011: Ch. 6.2.7). Finally, a common approach is to conduct multiple analyses 
on the same data using different initializations and to select the best one, given some
definition of “best”; for more on this approach see the discussion of cluster validation 
at the end of the present chapter. 

• Convergence. 

K-means is guaranteed to converge on a stable solution, though that solution might 
be local; convergence to a global optimum is not guaranteed (Xu and Wunsch 2009: 
Ch. 4.3). The usual way to forestall this possibility is to conduct multiple analyses of 
the same data using different initializations and then to select the resulting 
consensus result. 

• Outliers. 



Because k-means is based on centroids, it is strongly affected by the presence of 
outliers which distort the location of the centroids in the data space. Outliers should 
therefore be identified and eliminated prior to analysis. 

• Cluster shape. 

K-means is limited in the range of clusters it can identify. This is demonstrated with 
reference to the clusters in Figure 4.17, where (a)–(c) are simplified abstractions of 
the cluster shapes in Figure 4.1b–4.1d respectively, and (d) is an additional shape 
often used in the literature to exemplify a particularly challenging cluster structure, 
where one cluster is completely enclosed by another. 

Figure 4.17: A range of cluster shapes for k-means analysis 

The k-means analysis of the data underlying Figures 4.17a-d gave the results shown 
in Figure 4.18. 



Figure 4.18: k-means solutions for clusters in Figure 4.17 

In Figure 4.18a–d the consensus prototypes arrived at by multiple initializations of k-
means are shown by crosses, and the data points associated with each prototype are
enclosed by boxes. The partitions of 4.18a and 4.18b accord with visual intuitions 
about cluster structure. However, those of 4.18c and 4.18d do not; this failure is 
symptomatic of a fundamental limitation on the clustering capability of k-means. 

K-means partitions the data points in an n-dimensional metric space into k regions 
such that the points in each region are closer to their centroid than they are to the 
centroid of any other region; mathematically this is a Voronoi partition, already 
introduced in the discussion of the SOM. It does this purely on the basis of a linear 
metric such as Euclidean distance and, crucially, without reference to the density 
structure or, put another way, without reference to the shape of the data. Where the 
partition happens to coincide with the density structure, as in 4.18a and 4.18b, k-
means successfully identifies the cluster structure, and where not, as in Figures 
4.18c and 4.18d, it fails. The condition for success, that is, for coincidence of k-
means partition and density structure, is that the dense regions of the data space be 
linearly separable, which means that the dense regions can be separated from one 
another by straight lines in two dimensions, or by planes or hyperplanes in higher 
dimensions; for a recent discussion of linear separability see Elizondo (2006). Linear 
separability and its coincidence with k-means partitioning is shown in Figures 4.19a 
and 4.19b, where the lines indicate the separability. There is, however, no way of 
linearly separating the intertwined clusters of 4.19c and 4.19d no matter how straight 
lines are drawn, some points from the upper and lower clusters will be in the same 
partition. Placement of the k-means prototypes indicates that the partition will cut 
across the data density structure and give the results in 4.18c and 4.18d. 



Figure 4.19: k-means and linear separability 

The moral, therefore, is that k-means can only be relied upon reliably to identify 
clusters in data whose dense regions are linearly separable. 

The PCA and MDS two-dimensional visualizations of MDECTE derived earlier in Figure 4.2 
indicate, on the one hand, that k-means can be used because the data density structure is 
linearly separable, and on the other suggest a suitable value for k. Table 4.2 shows the k-
means results for k = 2; ten different prototype initializations were tried, and all gave the 
same result, which is compatible with both the PCA and MDS ones. 

Table 4.2: k-means clusterings of MDECTE for k = 2 

Because of its simplicity and computational efficiency, k-means continues to be developed in
the hope of eliminating or at least mitigating its disadvantages. These developments are 
reviewed in Gan, Ma, and Wu (2007), Jain (2010), Jain, Murty, and Flynn (1999), Kogan 
(2007), Mirkin (2011, 2013), and Xu and Wunsch (2005, 2009); those most obviously 
relevant to the present discussion are outlined below. 

• Initialization. 



No general and reliable method for selecting initial parameter values for the number 
of clusters and placement of prototypes in known, and given the crucial role that 
these play in determining the k-means result, it is unsurprising that initialization 
remains a research focus. Several approaches to the problem have already been 
mentioned. For initial prototype placement one of these approaches was to use of 
various parameter value selection heuristics. The simplest of these heuristics is 
random selection; others use a variety of criteria derived from the data. (Pena, 
Lozano, and Larranaga 1999) compared random selection to those proposed by 
(Forgy 1965), (MacQueen 1967) and (Kaufman and Rousseeuw 1990) and 
concluded that random selection and Kaufman’s method were superior to the other 
two, with preference given to Kaufman’s; more recent ones are (Bradley and Fayyad 
1998; Likas, Vlassis, and Verbeek 2003). With respect to selection of the number of 
clusters k, (Ball and Hall 1967)’s Isodata algorithm sidesteps the problem by 
providing a mechanism for merging and splitting clusters so that the value of k can 
increase or decrease in the course of the iterative k-means procedure: a cluster is 
split when its variance is above a specified threshold, and two clusters are merged 
when the distance between their centroids is below another specified threshold. This 
can provide an optimal number of partitions irrespective of the initial specification of 
k, and so is an attractive solution in principle. To work well in practice, however, 
Isodata requires optimization of no fewer than six threshold parameters, and the 
extra complication might not be thought worthwhile relative to simply finding an 
optimal value of k empirically, as described above. 

• Convergence. 

As noted, the standard k-means procedure does not guarantee convergence to a 
global optimum. Stochastic optimization techniques like simulated annealing, genetic 
algorithms, and neural networks (Pham and Karaboga 2011) can do this, but at a 
very heavy computational cost. For applications of this type see (Krishna and Murty 
1999; Patane and Russo 2001). 

• Outliers. 

Outliers are a problem for k-means where centroids are used for cluster prototypes 
because, when an outlier is included in a cluster, the averaging pulls the cluster 
centroid away from where the other points would place it and towards the outlier. 
Using medoids instead of centroids eliminates this effect. Relative to a given cluster, 
a centroid is an abstraction which only coincidentally corresponds to any one of the 
actual data points in the cluster. A medoid, on the other hand, is an actual data point, 
and more specifically the point which is closest to the centroid and therefore best 
represents the centre of the cluster. When medoids instead of centroids are used as 
cluster prototypes, outliers cannot affect the prototypes because no averaging is 
involved. Examples of algorithms that use medoids are PAM (Partitioning Around 
Medoids) (Kaufman and Rousseeuw 1990), CLARA (ibid.), and CLARANS (Ng and 
Han 2002). 

• Detection of non-linearly-separable clusters 



Because the standard k-means method uses a linear proximity measure between 
data points and the definition of centroids is a linear operation, it is a linear clustering 
method which, as we have seen, means that it can only be relied upon to identify 
clusters corresponding to linearly-separable regions of data density. If, however, it 
were possible to separate dense regions nonlinearly, as in Figure 4.20, this 
fundamental limitation could be overcome. 

Figure 4.20: Nonlinear separation of intertwined clusters 

The kernel k-means algorithm makes this possible. Like kernel methods generally, 
this development of k-means is based on Cover’s Theorem (Cover 1965) in 
computational learning theory which says, in essence, that when clusters not linearly 
separable the data can be transformed by projection into a higher dimensional space 
using a suitable nonlinear function so that the clusters become linearly separable in 
the higher dimensional space; linear methods like standard k-means can then be 
used to cluster the transformed data (Dhillon, Guan, and Kulis 2004, 2005; Shawe-
Taylor and Cristianini 2004). 

Density-based clustering 

Standard k-means fails to identify non-linearly-separable clusters because it partitions the 
data into clusters without reference to its density structure. The obvious solution is to take 
account of density, and this is what density-based clustering methods do; for general 
discussions see: Jain and Dubes (1988: Ch. 3.3.5), Han and Kamber (2001), Berkhin (2006),
Tan, Steinbach, and Kumar (2006: Ch. 9.4), Gan, Ma, and Wu (2007: Ch.13), Everitt et al. 
(2011: Ch. 8.2). This section first describes Dbscan, currently the best established and most 
popular density-based clustering method, and then goes on to look more briefly at other 
approaches to density clustering. Dbscan was proposed by Ester et al. (1996), and is 
discussed in Tan, Steinbach, and Kumar (2006: Ch. 8.4), Gan, Ma, and Wu (2007: Ch. 13), 
and Everitt et al. (2011: Ch. 8.3). 

Dbscan is based on a topological view of data manifolds, which was introduced in the 
discussion of Isomap in the preceding chapter. On this view, a data manifold is defined not in
terms of the positions of its constituent points in an n-dimensional space relative to the n 
basis vectors, but rather as a set of adjacent, locally-Euclidean neighbourhoods. The 
essential idea is that clusters are collections of sufficiently dense adjacent neighbourhoods, 



and that neighbourhoods which are insufficiently dense are noise, given some definition of 
‘sufficiently dense’. This is shown in Figure 4.21. 

Figure 4.21: Dense and noise neighbourhoods in Dbscan 

Each point p in Figure 4.21 has a neighbourhood, and a neighbourhood is defined as a 
radius r centred on p; density is the number of points in a neighbourhood, and sufficient 
density is some threshold number of neighbourhood points. In Figure 4.21 a sample of radii 
is shown as circles centred on points, and the threshold density number is taken to be 5. The
point labelled A is visually not a member of the two main clusters, and Dbscan would regard 
it as noise because its neighbourhood contains only one member, itself, and is thus 
insufficiently dense. B is denser, but with only two members insufficiently so, and is also 
regarded as noise by Dbscan, which is again visually confirmed. C contains four members 
and is nearly but not quite sufficiently dense in terms both of intuition and of Dbscan. The 
collection of neighbourhoods labelled D are all sufficiently dense and adjacent, and so 
belong to their respective clusters; continuation of the series of circles would eventually 
cover the two visually-identifiable intertwined clusters. 

To implement this idea Dbscan requires predefinition of two parameters: the radius r, called 
Eps, which defines the size of the neighbourhood, and the threshold number of points for 
sufficient density, called MinPts. Relative to these parameters, three types of point are 
distinguished: 

• Core points, whose neighbourhood contains MinPts or more points. 

• Border points, whose neighbourhood contains fewer than MinPts but which are 
themselves in the neighbourhood of one or more core points. 

• Noise points, which are all points that are not either core or border points. 

Assuming m data points, the Dbscan algorithm is as follows: 

1. Visit each data point mi , i = 1...m, labelling each as a core, border, or noise point in 

accordance with the above definitions 



2. Eliminate all the noise points. 

3. Link all pairs of core points within a radius Eps of one another. 

4. Abstract the clusters, where a cluster is the set of all linked core points. 

5. Assign the border points to the clusters. If a border point is in the neighbourhood of only 
one core point, assign it to the cluster to which the core point belongs. If it is in more than 
one neighbourhood, assign it arbitrarily to one of them. 

Like k-means, Dbscan was selected for inclusion because it is a easy to understand and 
interpret, is mathematically well founded, has an established user base, and is readily 
available in software implementations. It has important advantages over k-means, however. 
One is that Dbscan does not require and in fact does not permit prespecification of the 
number of clusters, but rather infers it from the data; selection of k is one of the main 
drawbacks of k-means, as we have seen. Another is that Dbscan can find non-linearly-
separable clusters, which extends its range of applicability beyond that of k-means. The k-
means procedure was, for example, able to identify the linearly separable clusters in Figures
4.18a and 4.18b, but not the non-linearly-separable ones of 4.18c and 4.18d; as Figure 4.22 
shows, Dbscan is able to identify them all. 



Figure 4.22: Dbscan clustering of manifolds for which k-means fails 

Dbscan’s computational time complexity is somewhat more demanding than that of k-

means, though still reasonably moderate in ranging from O(mlogm) to a worst-case O(m2 ), 
where m is the number of data points (Ester et al. 1996), but on the other hand it is highly 
resistant to noise and outliers when the clusters are uniformly dense, though not otherwise, 
on which see further below. 

Perhaps inevitably, however, Dbscan has its problems. 

• Selection of parameter values. 

As with k-means, selection of suitable parameter values strongly affects the ability of 
Dbscan to identify the intrinsic data cluster structure. Given some value for MinPts, 
increasing the size of Eps will allow an increasing number of points to become core 
points and thereby include noise points in the clusters, as in Figure 4.23a, and 
decreasing Eps makes it more and more difficult for any neighbourhood to achieve 
MinPts, with the result that many points which actually belong to a cluster become 
border or noise points, as in 4.23b. Conversely, given some value for Eps, increasing
MinPts makes it more difficult for points to become core, and decreasing it makes it 
easier. 



Figure 4.23: The relationship of MinPts and Eps 

The question, therefore, is how to select optimal Eps and MinPts values for any given
data. Dbscan does not optimize a global objective function, so identification of 
suitable Eps and MinPts values by trial and error is not a reliable option. Heuristic 
methods for parameter value selection exist (Daszykowski, Walczak, and Massart 
2001; Ester et al. 1996) and appear to work well for at least some kinds of data, but 
the fundamental problem remains: in the absence of a clear definition of ‘best’, how 
does one know which value combination gives the best result? Direct visualization of 
the shape of the data, as in Figure 4.23, provides an objective check, but where the 
data dimensionality precludes this there is no obvious way of knowing whether the 
specific parameter value selection has given the best or even a good result. 

• Variation in data density. 

Dbscan has difficulty with data in which the density of the clusters varies 
substantially. Using heuristicallydetermined parameters values Eps = 1.8565 and 
MinPts = 4 it had no problem finding the two clusters in Figure4.24a. 



Figure 4.24: Clusters with similar and dissimilar densities 

In Figure 4.24b the upper cluster was sparsified by adding random values to the 
underlying data, with the result that Dbscan was unable to identify the two-cluster 
structure in a way that agrees with visual intuition; in 4.25a the same parameter 
values as for 4.24a find the bottom cluster 5 as before, but cause the sparse cluster 
to be partitioned into four smaller clusters 1–4. A small increase of Eps in 4.25b to 2.5
produces a 3-cluster result by partitioning the sparse cluster into two, and a tiny 
further increase in 4.25c to 2.52 produces a two-cluster solution by combining the 
dense cluster with most of the sparse one. A further increase of Eps to 2.7 merges all
the data points into a single cluster. The problem is that if Eps is small enough to 
keep the lower cluster separate from the upper one then it is too small to allow the 
upper one to be identified as a single cluster, and if Eps is large enough for the upper
one to be identified as a single cluster then it is too large to keep the upper cluster 
separate from the lower one. 

Figure 4.25: Dbscan clusters with various Eps values 



With sufficient searching a parameter value combination which does identify the 
visually-obvious structure might be found, but this should not obscure the 
fundamental point: it is only when the correct cluster structure is known a priori, as 
here, that one can judge whether or not Dbscan has found it and, if not, can adjust 
the parameter values until it does. Where such a priori knowledge is lacking, any 
Dbscan-generated clustering result might be suboptimal or just plain wrong because 
of a poor choice of parameters values, or because the data clusters vary in density, 
or both. 

Application of Dbscan to MDECTE exemplifies the foregoing comments. Two experiments 
were conducted. In the first, MinPts values in the range 2-50 were used, in each case using 
an Eps value determined by one of the above-mentioned heuristic methods; these values 
were in the range 77.73 – 82.22 which is small in relation to the scale of the data. For 
MinPts 2-35 Dbscan returned one cluster with a relatively few noise points, and from MinPts 
= 36 onwards there were only noise points without any clusters. In the second experiment 
MinPts was held constant at 4 and Eps values in the range 5 – 85 were used, in increments 
of 5: from 5 to 65 there were only noise points and no clusters, and from 70 onwards there 
was one cluster with a relatively few noise points. A reasonable conclusion would be that 
MDECTE has only one cluster, and therefore no interesting cluster structure. We know from 
previous analyses using different clustering methods that this is not the case, however. The 
two-cluster structure shown in Figures 4.2 and 4.12 is significant: there is one relatively 
dense cluster and one relatively sparse one, and, as expected in the light of the foregoing 
discussion, Dbscan was unable to identify it; in all trials the points in the smaller sparse 
cluster were treated as noise. 

Because Dbscan can identify a superset of data shapes identifiable by k-means, it is 
tempting simply to dispense with k-means and to use Dbscan as the default analytical 
method. The foregoing discussion of problems with Dbscan and its application to MDECTE 
show, however, that this would be ill-advised. Where it is known or strongly suspected that 
the data density structure is linearly separable, the more reliable k-means method should be 
used, and if the data is non-linearly separable then results from Dbscan should, in view of its
initialization and sparsity problems, be corroborated using some other clustering method or 
methods. 

That variation in data density is a problem for Dbscan was quickly recognized, and proposals
for addressing it have appeared, including Gdbscan (Sander et al. 1998), Optics (Ankerst et 
al. 1999), Snn (Ertöz, Steinbach, and Kumar 2003), Vdbscan (Liu, Zhou, and Wu 2007), 
Dvbscan (Ram et al. 2010), and most recently modifications to Dbscan by Dawoud and 
Ashour (2012) and Serdah and Ashour (2012). These are effective to varying degrees and 
have their own problems, but all improve on Dbscan with respect to the cluster density 
problem. The remainder of this section briefly present other approaches to density-based 
clustering. 

A fairly obvious approach to identification of density in data is to cover the data space with a 
grid and count the number of data objects in each cell, as shown in Figure 4.26: regions of 
the grid where contiguous cells contain relatively many points are clusters, regions where 
they contain relatively few are noise, and empty regions contain no data. 



Figure 4.26: Grid covering the data in Figure 4.24b 

Jain and Dubes (1988) in fact suggested such an approach, but realized that high 
dimensionality would be a problem for reasons given earlier with respect to dimensionality 
reduction: the number of cells grows very rapidly with increasing data dimensionality and the
distribution of data points becomes so sparse that fewer and fewer cells contain even a 
single point, making it increasingly difficult to identify variation in density. An additional 
problem is specifying cell resolution, where the smaller the cell the lower the number of 
points in each, on average, giving a noisy and indistinct representation of the data density, 
and the larger the cell the larger the average number of points in each and the coarser the 
density representation. This is analogous to the Dbscan neighbourhood parameter Eps: like 
Eps, it is not obvious what the optimum cell size should be, and, also as with Dbscan, it may 
not be possible to find a single cell size that deals adequately with clusters of different 
densities. 

For general discussions of grid-based clustering see: Jain and Dubes (ibid.: Ch. 3.3.5), 
Berkhin (2006), Tan, Steinbach, and Kumar (2006: Ch. 9.3.1), Gan, Ma, and Wu (2007: Ch. 
12). Some specific methods which address the issues of dimensionality and parameter 
selection are Gridclus (Schikuta 1996), Bang (Schikuta and Erhart 1997), Sting(Wang, Yang,
and Muntz 1997), Dbclasd (Xu et al. 1998), Optigrid (Hinneburg and Keim 1999), Clique 
(Agrawal et al. 1998, 2005), and Ggca (Yue et al. 2008). 

Kernel-based clustering is based on concepts from statistical density function estimation, the
aim of which is to find a mathematical function that generates some given data distribution 
(Dhillon, Guan, and Kulis 2004, 2005; Shawe-Taylor and Cristianini 2004). To do this, the 
contribution of each data point to the overall density function being estimated is expressed 
by a kernel probability density function, and the overall function is the sum of the individual 
kernel functions. A frequently used kernel function is the multivariate normal one, an 
example plot of which is given in Figure 4.27, where 4.27a shows its shape in three 
dimensions, and 4.27b in two dimensions as seen from above. 



Figure 4.27: Plot of a multivariate normal probability density function 

Figure 4.28 shows a normal kernel function as concentric circles analogous to Figure 4.27b 
around a representative selection of points in a data distribution: dense functional areas like 
A constitute clusters, and less dense ones like those labelled B are regarded as noise. 

Figure 4.28: Clustering with kernel probability density functions 

The basic idea here is very like that of the neighbourhood density of Dbscan or the cell 
density of grid-based clustering, but in this case the important parameter is the shape of the 
kernel function. The standard kernel-based density clustering method is Denclue (Hinneburg
and Gabriel 2007; Hinneburg and Keim 1998, 2003), for which see also the discussion in 
Tan, Steinbach, and Kumar (2006: Ch. 9.3.3). 

Hierarchical clustering 

Given an m × n data matrix D which represents m objects in n-dimensional space, 
hierarchical analysis does not partition the m objects into k discrete subsets like the 



clustering methods described so far. Instead, it constructs a constituency tree which 
represents the distance relations among the m objects in the space and leaves it to the user 
to infer a partition from the tree. 

Hierarchical clustering is very widely used, and so is covered in most accounts of cluster 
analysis, multivariate analysis, and related disciplines like data mining. A selection of 
discussions is Jain and Dubes (1988: Ch. 3.2), Jain, Murty, and Flynn (1999), Tan, 
Steinbach, and Kumar (2006: Ch. 8), Gan, Ma, and Wu (2007: Ch. 7), Izenman (2008: Ch. 
12), Xu and Wunsch (2009: Ch. 3), Everitt et al. (2011: Ch. 4), Mirkin (2011: Ch. 7), Mirkin 
(2013: Ch. 4). 

Construction of a hierarchical cluster tree is a two-step process: the first step abstracts a 
proximity table from the data matrix to be analyzed, and the second constructs the tree by 
successive transformations of the table. An intuition for how tree construction proceeds is 
best gained by working through an example; the example presented in what follows is based
on MDECTE, and more specifically on a subset of MDECTE small enough to render 
illustrative tables and figures tractable for graphical representation. The concept of proximity 
among data objects has already been described in the foregoing discussion of data 
geometry. Euclidean distance is used to exemplify its application to construction of a 
proximity table for the first 6 of the full 63 rows of MDECTE. The Euclidean distances 
between all possible pairings of these 6 rows were calculated and stored in a 6×6 matrix D, 
shown in Table 4.3. 

Table 4.3: Euclidean distance matrix for the first six row of MDECTE 

The Euclidean distance from g01 to g02 is 116.9, from g01 to g03 it is 59.0, and so on. To 
further simplify the discussion to follow, it is observed that the table is symmetrical on either 
side of the zero-values on the main diagonal because the distance between any two row 
vectors in the data matrix is symmetrical –the distance from g02 to g03 is the same as the 
distance from g03 to g02. Since the upper-right triangle simply duplicates the lower-left one it
can be deleted without loss of information. The result is shown in Table 4.4. 



Table 4.4: Euclidean distance matrix for the first six rows of MDECTE with superfluous
entries removed 

Given m objects to be clustered, construction of a cluster tree begins with m clusters each of
which contains a different object. Thereafter, the tree is constructed in a sequence of steps 
in which, at each step, two clusters are joined into a superordinate cluster and the distance 
matrix D is transformed so as to incorporate the newly created cluster into it. The sequence 
ends when only one cluster, the tree itself, remains and D is empty. The joining of clusters 
requires some criterion for deciding which of the clusters available at any given step in the 
tree construction process should be selected for combination. The literature contains a 
variety of different criteria, and these will be presented in due course; the one chosen for 
detailed description joins the two clusters with the smallest distance between them in the 
distance matrix. The following sequence of cluster joins and matrix transformations 
exemplifies this. 

Initially, each row vector of the data matrix is taken to be a cluster on its own; clusters here 
and henceforth are shown in brackets. Table 4.5a shows the original distance matrix of Table
4.4. It is searched to find the smallest distance between clusters. This is the distance 59.0 
between row 1, that is, g01 and row 3, that is, g03, shown bold-face. These are combined 
into a new composite cluster (1,3). 

Table 4.5: Joining the two nearest single-speaker clusters into a composite cluster 

Table 4.5a is now transformed into the one in Table 4.5b: 

i. Rows and columns (1) and (3) are removed from the Table 4.5a and replaced in 
4.5b with a single blank row and column to accommodate the new (1,3) cluster; 0 is 
inserted as the distance from (1,3) to itself. 

ii. Into the blank cells of the (1,3) row and column of Table 4.5b are inserted the 
minimum distances from (1,3) to the remaining clusters (2), (4), (5), and (6). What 
does this mean? Referring to Table 4.5a, the distance between (1) and (2) is 116.9 
and between (3) and (2) it is 113.2; the minimum is 113.2, and that value is inserted 
into the cell representing the minimum distance between (1,3) and (2) in Table 4.5b. 
The distance between (1) and (4) in Table 4.5a is 82.6 and between (3) and (4) is 



79.4; the latter value is inserted into Table 4.5b as the minimum distance between 
(1,3) and (4). By the same procedure, the minimum distances between (1,3) and 5 
and between (1,3) and 6 are inserted. The resulting table is smaller by one row and 
one column; inserted values are shown in bold-face, and the remaining ones are 
unchanged. 

Table 4.5c is a list showing the sequence of cluster joins together with the distance at which 
they were combined; this list is the basis for the graphical representation of the cluster tree 
shown in Table 4.5d. The scale line below the tree in 4.5d allows the joining distance to be 
read from the graphical representation; one can, for example, see that (1) and (3) are joined 
just short of 60, that is, at 59.0. The reduced matrix of Table 4.5b is used as the basis for the 
next step, shown in Table 4.6a 

The matrix in Table 4.6a is searched to find the smallest distance between clusters. This is 
69.3 between (1,3) and (6), and these are combined into a composite cluster ((1,3),6). The 
matrix is transformed into the one in 4.6b as in the previous step: 

i. Rows and columns (1,3) and (6) are removed and replaced with a single blank row 
and column to accommodate the new ((1,3),6) cluster, with 0 inserted as the distance
from ((1,3),6) to itself. 

ii. Into the blank cells of the ((1,3),6) row and column are inserted the minimum 
distance from ((1,3),6) to the remaining clusters (2), (4), and (5). Referring to Table 
4.6a, the distance between (1,3) and (2) is 113.2 and between (6) and (2) it is 116.8; 
the minimum is 113.2, and that value is inserted into the cell representing the 
minimum distance between ((1,3),6) and (2). The distance between (1,3) and (4) is 
79.4 and between (6) and (4) is 78.9; the latter value is inserted into the matrix as the
minimum distance between ((1,3),6) and (4). By the same procedure, the minimum 
distance between ((1,3),6) and 5 is inserted. The resulting table is again smaller by 
one row and one column; inserted values are highlighted, and the remaining ones 
are again unchanged. 



Table 4.6d shows the tree after the second step together with the distance between (1,3) 
and (6). The reduced matrix of Table 4.6b is used as the basis for the next step, shown in 
Table 4.7a. 

Table 4.7: Joining the composite cluster in Table 4.6 to the nearest single-speaker cluster 

The matrix in Table 4.7a is searched to find the smallest distance between clusters. This is 
78.9 between ((1,3),6) and (4), and these are combined into a composite cluster (((1,3),6),4).
The matrix is transformed into the one in 4.7b as in the previous step: 

i. Rows and columns ((1,3),6) and (4) are removed and replaced with a single blank 
row and column to accommodate the new (((1,3),6),4) cluster, with 0 is inserted as 
the distance from (((1,3),6),4) to itself. 

ii. Into the blank cells of the (((1,3),6),4) row and column are inserted the minimum 
distance from (((1,3),6),4) to the remaining clusters (2) and (5). Referring to Table 
4.7a, the distance between ((1,3),6) and (2) is 113.2 and between (4) and (2) it is 
98.8; the minimum is 98.8, and that value is inserted into the cell representing the 
minimum distance between (((1,3),6),4) and (2). The distance between ((1,3),6) and 
(5) is 103.8 and between (4) and (5) is 108.8; the former value is inserted into the 
matrix as the minimum distance between (((1,3),6),4) and (5). The resulting table is 
again smaller by one row and one column; inserted values are highlighted, and the 
remaining one is again unchanged. 

Table 4.7d shows the tree after the third step together with the distance between ((1,3),6) 
and (4). The reduced matrix of Table 4.7b is used as the basis for the next step, shown in 
Table 4.8a. 



Table 4.8: Joining the composite cluster in Table 4.7 to the nearest single-speaker cluster 

The matrix in Table 4.8a is searched to find the smallest distance between clusters. This is 
98.8 between (((1,3),6),4) and (2), and these are combined into a composite cluster 
((((1,3),6),4),2). It is transformed into the one in 4.8b as in the previous step: 

i. Rows and columns ((((1,3),6),4) and (2) are removed and replaced with a single 
blank row and column to accommodate the new ((((1,3),6),4),2) cluster, with 0 is 
inserted as the distance from ((((1,3),6),4),2) to itself. 

ii. Into the blank cells of the ((((1,3),6),4),2) row and column is inserted the minimum 
distance from ((((1,3),6),4),2) to the remaining cluster (5). Referring to Table 4.8a, the
distance between (((1,3),6),4) and (5) is 103.8 and between (2) and (5) it is 124.4; 
the minimum is 103.8, and that value is inserted into the cell representing the 
minimum distance between ((((1,3),6),4),2) and (5). The resulting table is again 
smaller by one row and one column; the inserted value is highlighted. 

Table 4.8d shows the tree after the fourth step together with the distance between 
(((1,3),6),4) and (2). The reduced matrix of Table 4.8b is used as the basis for the next step, 
which is trivial because only one cluster remains. This remaining cluster is combined with the
existing composite one, yielding a single final cluster (((((1,3),6),4),2),5) and completing the 
tree, as in Table 4.9. 



Table 4.9: Joining the composite cluster in Table 4.8 to the nearest single-speaker cluster 

Variants 

For a matrix with m rows there will at any step in the above tree-building sequence be a set 
of p clusters, for p in the range 2...m, available for joining, and two of these must be 
selected. At the first step in the clustering sequence, where all the clusters contain a single 
object, this is unproblematical: simply choose the two clusters with the smallest distance 
between them. At subsequent steps in the sequence, however, some criterion for judging 
relative proximity between composite and singleton cluster pairs or between composite pairs
is required, and it is not obvious what the criterion should be. The one exemplified in the 
foregoing sequence is such a criterion , known as Single Linkage, but there are various 
others (Jain and Dubes 1988: ch.3.2), (Tan, Steinbach, and Kumar 2006: Ch. 8.3), (Gan, Ma,
and Wu 2007: Ch. 6.8), (Manning, Raghavan, and Schütze 2008: Ch. 17), (Xu and Wunsch 
2009: Ch. 3), (Everitt et al. 2011: Ch. 4). Some of the more commonly used criteria are 
described in what follows. 

For simplicity of exposition, it is assumed that a stage in the tree building sequence has 
been reached where there are p = 3 clusters remaining to be joined. This is shown in Figure 
4.29: 4.29a shows a scatterplot of the data being clustered, and 4.29b the current state of 
tree construction. 



Figure 4.29: An intermediate stage in a hierarchical cluster tree construction 

Which pair of subtrees should be joined next? Based on visual examination of the 
scatterplot, the intuitively obvious answer is the pair of clusters closest to one another, that 
is, A and B. Where the data are higher-dimensional and cannot be directly plotted, however, 
some explicit specification of closeness is required. This is what the various cluster-joining 
criteria referred to above provide. 

• The Single Linkage criterion defines the degree of closeness between any pair of 
clusters (X,Y) as the smallest distance between any of the data points in X and any 
of the data points in Y: if there are x vectors in X and y vectors in Y, then, for i = 1... x,
j = 1... y, the Single Linkage distance between X and Y is defined as 

 SingleLinkageDistance(X,Y ) = min(dist(Xi ,Yj)) 

where dist(Xi ,Yj) is the distance between the i’th vector in X and the j’th vector inY 

stated in terms of whatever metric is being used, such as Euclidean distance. The 
Single Linkage distances between all unique pairs of the p vectors remaining to be 
clustered are calculated, and the pair with the smallest distance is joined. This is 
exemplified for the three clusters of Figure 4.29 in Figure 4.30. 



Figure 4.30: Single Linkage 

The arrowed lines in Figure 4.30a represent distances between the points closest to 
one another in cluster pairs (A,B), (A,C), and (B,C); the one between A and B is 
shortest, so these two clusters are joined, as in Figure 4.30b. Single Linkage is also 
commonly known as Nearest Neighbour clustering, for self-evident reason, and is the
linkage criterion exemplified in detail in the foregoing discussion. 

• The Complete Linkage criterion defines the degree of closeness between any pair of 
clusters (X,Y) as the largest distance between any of the data points in X and any of 
the data points in Y: if there are x vectors in X and y vectors in Y, then, for i = 1... x, j 
= 1... y, the Complete Linkage distance between X and Y is defined as

CompleteLinkageDistance(X,Y ) = max(dist(Xi ,Yj)) 

where dist(Xi ,Yj) is the distance between the i'th vector in X and the j'th vector in Y 

stated in terms of whatever metric is being used, such as Euclidean distance. The 
Complete Linkage distances between all unique pairs of the p vectors remaining to 
be clustered are calculated, and the pair for which the Complete Linkage distance is 
smallest is joined. This is exemplified for the three clusters of Figure 4.29 in Figure 
4.31.

Figure 4.31: Complete Linkage 

The arrowed lines in Figure 4.31a represent distances between the points furthest 
from one another in cluster pairs (A,B), (A,C), and (B,C); the one between A and B is 
shortest, so these two clusters are joined, as in Figure 4.31b. The intuition behind 
this joining criterion may not be immediately obvious, but is does make sense: finding
and joining the cluster pair with the smallest maximum distance between their 
members creates a cluster with the smallest diameter at that stage in the clustering 
procedure, and therefore the most compact cluster. Complete Linkage is also 
commonly known as Furthest Neighbour clustering, again for self-evident reason. 



• The Centroid Linkage criterion defines the degree of closeness between any pair of 
clusters (X,Y) as the distance between their centroids , as in 

where dist is defined as above. The centroid distances between all unique pairs of 
the p vectors remaining to be clustered are calculated,and the pair for which the 
distance is smallest is joined. The centroid distances for all unique pairings of the p 
clusters are calculated using the proximity matrix, and the pair for which 
centroiddistance(A,B) is smallest is joined. This is exemplified for the three clusters of
Figure 4.29 in Figure 4.32 

Figure 4.32: Centroid Linkage 

The arrowed lines in 4.32a represent distances between centroids in cluster pairs 
(A,B), (A,C), and (B,C), which are shown as crosses; the one between A and B is 
shortest, so these two clusters are joined, as in Figure 4.32b. 

• The Average Linkage criterion defines the degree of closeness between any pair of 
clusters (X,Y) as the mean of the distances between all ordered pairs of objects in 
the two different clusters: if X contains x objects and Y contains y objects, this is the 
mean of the sum of distances (Xi ,Yj) (where Xi ∈  X,Yj ∈Y, i = 1... x, j = 1... y, as in 

where dist is defined as previously; note that distances of objects to themselves are 
not counted in this calculation, and neither are symmetric ones on the grounds that 
the distance from, say Xi to Yj is the same as the distance from Yj to Xi . 



• Increase in Sum-of-Squares Linkage (Ward’s Method) defines the degree of 
closeness between any pair of clusters (X,Y) in terms of minimization of variability 
using an objective function. To describe it, two measures need to be defined. The 
error sum of squares (ESS) is the sum of squared deviations of the vectors in A from 
their centroid. If A contains m vectors, then ESS is defined by 

The total error sum of squares (TESS) of a set of p clusters is the sum of the error 
sum of squares of the p clusters. At each step in the treebuilding sequence, the ESS 
for each of the p clusters available for joining at that step is calculated. For each 
unique combination of cluster pairs the increase in TESS is observed, and the pair 
which results in the smallest increase in TESS is joined. 

Finally, hierarchical variants are standardly divided into agglomerative vs. divisive methods. 
Agglomerative tree construction was exemplified above: it begins by partitioning the set of 
data objects so that each member of the set is a cluster on its own, and then builds the tree 
incrementally by joining pairs of clusters at each step until no more pairs remain and the tree
is complete. Because it incrementally builds trees of increasing complexity from simpler 
components, agglomerative clustering is also called bottom-up clustering. Divisive tree 
construction begins with a single cluster consisting of all the data objects, and builds the tree
incrementally by partitioning that cluster into subtrees at each step until each cluster 
contains a single data object and no more division is possible, at which point the tree is 
complete; because it incrementally subdivides a set into subsets, divisive clustering is also 
known as topdown clustering. Divisive clustering, described in detail by Xu and Wunsch 
(2009: 37ff.), is less often used than agglomerative clustering – see: Everitt and Dunn (2001:
67ff.), Izenman (2008: 411), Everitt et al. (2011: 84ff.) – because, on the one hand, the latter 
is computationally more tractable with respect to large data matrices, and on the other 
because divisive methods are not always available in hierarchical clustering software 
implementations. For these reasons, the remainder of this section deals with agglomerative 
methods only. 

Though the above tree-building sequence makes it obvious, it nevertheless seems worth 
making explicit the distinction between the tree generated by a hierarchical analysis and its 
graphical representation: the tree is the table of joining distances (c) in Table 4.9, more 
commonly known as the agglomeration schedule, and its representation in Table 4.9d is a 
dendrogram. The subcluster constituency shown by the dendrogram represents the order in 
which subclusters were joined in the tree-building sequence and the lengths of the lines 
joining subclusters represent the inter-cluster distances at which they were joined, as 
recorded in the agglomeration schedule. 

Because a cluster tree represents constituency only, the sequential ordering of constituents 
has no interpretative significance. Given the tree in Table 4.9d, for example, any pair of 
constituents can be rotated about its axis, thereby reversing the sequencing, without 
affecting its constituency structure, as in Figure 4.33. 



Figure 4.33: Different sequential orderings of the same constituency struture 

In Figure 4.33b clusters (1) and (3) and clusters (1,3) and 6 are reversed without affecting 

the constituency structure; in fact, for any given constituency structure, there are 2n−1 trees 
with different sequencings of constituents (Everitt et al. 2011: Ch. 4). Algorithms for 
optimizing the sequencing of constituents relative to various definitions of optimality have 
been devised; see for example Everitt et al. (ibid.: Ch. 4). 

Note also that dendrograms are more often shown sideways than in the ‘icicle’ or downward-
facing format more familiar to linguists from phrase structure trees. This is a purely practical 
matter: an icicle format rapidly broadens out as the number of data objects grows, making it 
impossible to display on a page. 

Issues 

The main and considerable advantage of hierarchical clustering is that it provides an 
exhaustive and intuitively accessible description of the proximity relations among data 
objects, and thereby provides more information that a simple partitioning of the data 
generated by the non-hierarchical methods covered thus far. It has also been extensively 
and successfully used in numerous applications, and is widely available in software 
implementations. There are, however, several associated problems. 

• How many clusters? 

Given that a hierarchical cluster tree provides an exhaustive description of the 
proximity relations among data objects, how many clusters do the data ‘really’ 
contain? As already noted, it is up to the user to decide. Looking at a dendrogram like
the one in Figure 4.34 the answer seems obvious: there are two clusters A and B; 
each of these itself has some internal cluster structure, but that structure is 
insignificant compared to the main A/B partition. This intuition is based on the relative
lengths of the lines joining subclusters or, equivalently, on the relative values in the 
agglomeration schedule: unusually large intervals between successive merges is 
taken as an indication that the subclusters in question constitute ‘main’ clusters. 



Figure 4.34: Hierarchical tree showing a clear two-cluster structure 

What about a structure like the one in Figure 4.35, however? There are no obvious 
main clusters, and depending on the agglomeration level one selects, or, as it is 
usually expressed, where one cuts the tree, two, three, four or more clusters can be 
identified. 

Figure 4.35: Different ‘cuts’ of the same dendrogram 

In Figure 4.35a the cut is placed so that subclusters below a threshold of 100 are not 
distinguished, yielding two clusters A and B. In 4.35b the cut is at 90, yielding three 
clusters A −C, and in 4.35c there are four clusters A − D for a threshold of 73, and in 
4.35d there are five clusters A−E. Which is the best cut, that is, the once that best 
captures the cluster structure of the data? There have been attempts to formalize 



selection of a best cut (ibid.: Ch. 4), but the results have been mixed, and the current 
position is that the best cut is the one that makes most sense to experts in the 
subject from which the data comes. 

• Which tree? 

It is universally recognized in the literature that different cluster joining criteria can 
and typically do generate different trees for the same data. For example, Figure 4.36 
shows dendrograms for two different analyses of MDECTE. 

Both trees show a two-cluster structure consisting of the Newcastle speakers 57–63 
at the top of each, and the remaining ones, but the structuring of the latter differs 
greatly. This is hardly surprising. The various joining criteria articulate different views 
of how data points should be combined into clusters, and these views find their 
expression in different cluster trees relative to the same data. It does, however, raise 
two questions: given several hierarchical analyses of the same data generated by 
different joining criteria , which analysis should be preferred, and why? 



Figure 4.36: Dendrograms for MDECTE generated by different linkage criteria 

The traditional answer is, again, that an expert in the domain from which the data 
was taken should select the analysis which seems most reasonable in terms of what 
s/he knows about the research area. The obvious objection to this is that it is 
subjective. It runs the risk of reinforcing preconceptions and discounting the 
unexpected and potentially productive insights which are the prime motivation for use
of cluster analysis in hypothesis generation (Handl, Knowles, and Kell 2005); given a 
range of different analyses, one might well subconsciously look for what one wants to
see. The aesthetics of tree structuring might also become a selection factor. Looking 
at the trees in Figure 4.36, for example, one might find the clear cluster structure of 
the Ward’s Method tree more appealing than the uninformative chained structure of 
the Single Linkage one. Ultimately, of course, all human interpretation is subjective, 
but to be scientifically convincing that subjectivity needs to be constrained as much 
as possible. 

One way of constraining tree selection is to observe that there is a fundamental 
difference between the Single Linkage criterion and the others listed above: the latter
are distance-based clustering methods, and the former is a density-based one. 
Complete Linkage, Average Linkage, Centroid Linkage, and Ward’s Method all build 
clusters on the basis of linear distance between data points and cluster centres 
relative to the coordinates of the metric space in which the data is embedded. The 
result is a tree each level of which is a Voronoi partition of the data space: starting at 
the root, the first level divides the space into two partitions each of which contains the
data points closer to their centre than they are to the centre of the other partition, the 
second level divides the space into four such partitions, and so on. This partitioning 
is, moreover, done without reference to the density structure of the data. Single 
Linkage, on the other hand, builds clusters solely on the basis of local neighbourhood
proximity and without reference to cluster centres; it is to the other kinds of 
hierarchical clustering, therefore, as Dbscanis to k-means. As such, the expectation 
is that the non-Single Linkage group will, like k-means, correctly identify the cluster 
structure of data when its dense regions are linearly separable but not otherwise, 
whereas Single Linkage will be able to identify non-linearly separable clusters. Figure
4.37 shows a scatterplot of linearly separable clusters taken from the earlier 
discussions of k-means and Dbscan. 

Figure 4.37: Scatterplot of two-dimensional data showing three linearly separable clusters 



These clusters are correctly identified by both Single Linkage and Average Linkage 
clusters in Figure 4.38, where the latter is used as a representative for the non-
Single-Linkage varieties. 

Figure 4.38: Single linkage and average linkage dendrograms for the data underlying Figure
4.37 

For the two-dimensional data underlying the scatterplot in Figure 4.39, however, the 
Average Linkage cluster tree in Figure 4.40 partitions the data points exactly as k-
means did for this data earlier on in Figure 4.18c, cutting across the data density 
structure, whereas the Single Linkage tree identifies the data density structure just as
Dbscan did in Figure 4.22c. 

Figure 4.39: Scatterplot of two-dimensional data showing two non-linearly separable clusters



Figure 4.40: Single linkage and average linkage dendrograms for the data underlying Figure
4.39 

This difference between Single Linkage clustering and the others underlies the 
commonly-made observation in the literature that the non-Single Linkage criteria 
have a strong predisposition to find roughly spherical clusters in data even where 
clusters of that shape are known not to be present or indeed where the data are 
known not to have any meaningful cluster structure at all; see for example Dalton, 
Ballarin, and Brun (2009), Everitt et al. (2011: Ch. 4), whereas Single Linkage can 
identify clusters of arbitrary shape. 

The ability of Single Linkage to identify a superset of the cluster structures identifiable
by the other linkage methods implies that it is more likely than the others correctly to 
identify the structure latent in any given data, and that it is therefore the most 
authoritative of the linkage methods: in principle, no matter how aesthetically 
attractive a non-Single Linkage tree might be, or how much it accords with expert 
expectation, if it differs substantively from the Single Linkage tree, then the suspicion 
must be that the difference is an artefact of the linkage criterion rather than a 
reflection of intrinsic cluster structure. In practice there is a caveat, however. Single 
Linkage does not make a distinction between cluster structure and noise in data, and 
this can generate spurious structures; more is said about the effect of noise below. 
When the given data is known to have a non-linearly separable cluster structure and 



not to contain much or any noise, Single Linkage is authoritative. Where this is not 
known, selection of the best cluster tree, that is, the one which best captures the 
intrinsic cluster structure of the data, must be guided by the cluster validation 
methods discussed later in this chapter.

• Outliers and noise. 

All the joining criteria are affected by outliers and noise to different degrees and for 
different reasons; see for example Manning, Raghavan, and Schütze (2008: 350ff.). 
Outliers are not a problem for Single Linkage because it simply represents them as 
one-member clusters distant from the other clusters in the tree; this characteristic in 
fact makes Single Linkage clustering a good way to check for outliers. It is, however, 
much affected by noise, which results in chaining like that in Figure 4.36a. Noise is 
less of a problem for the remaining criteria but outliers are more of one: because 
Complete Linkage, Centroid Linkage, Average Linkage, and Ward’s Method are all 
based in one way or another on the notion of a cluster having a centre of gravity, an 
outlier artificially pulls that centre away from its natural location among the other data 
points, thereby affecting calculation of the centre and consequently distorting the 
structure of the tree. The effect of outliers in particular is seen as instability in the 
cluster structure. A stable clustering is one in which removal of a small number of 
data objects, or addition of a small number drawn from the same source as the 
original data, has a correspondingly small effect on the structure of a cluster tree; 
removal or addition or one or more outliers has a disproportionately large effect, and 
can often completely change the structure. When using hierarchical analysis, 
therefore, it is important to identify outliers and to eliminate them or at least to be 
aware of their presence when interpreting result 

• Computational complexity. 

In the general case, the time complexity of hierarchical agglomerative methods is 

O(n3 ), where n is the number of data objects, and even in optimized cases it is 

O(n2log(n)) except for Single Linkage, where further optimization to O(n2 ) is possible
(Jain, Murty, and Flynn 1999), (Manning, Raghavan, and Schütze 2008: p.353ff). 
Even with the optimizations, however, this level of computational complexity limits the
ability of hierarchical methods to process large data sets to the extent that, in data 
mining where data sets grow ever larger, they are now considered obsolete by some 
researchers (Tan, Steinbach, and Kumar 2006). Size is a relative matter, however, 
and this might not be a problem for corpus linguistic applications. 

Developments 

Hierarchical methods are not parameterized, and so initialization is not a problem, but cluster
shape, data size, noise, and outliers are. 

• Cluster shape. 

As noted, all the hierarchical methods except Single Linkage are predisposed to find 
linearly separable clusters in data even where the data do not actually contain that 
structure or indeed any cluster structure at all. The obvious solution is to use Single 
Linkage instead, but as we have seen this has a predisposition to generate 



uninformative chained structures when the data contains noise. Ideally, one would 
want a hierarchical method which is not limited to linearly separable structures on the
one hand and not compromised by chaining on the other. CURE (Guha, Rastogi, and
Shim 1998) and CHAMELEON (Karypis, Han, and Kumar 1999) are two such 
methods: both are density rather than proximity-based, both can find a greater range 
of cluster structures than the standard methods described above, and both are able 
to deal with substantial differences in cluster size and density, which can also be 
problems for the standard methods. For discussions of CURE and CHAMELEON see
Berkhin (2006), Ertöz, Steinbach, and Kumar (2003), Tan, Steinbach, and Kumar 
(2006). 

• Data size. 

The computational complexity of the standard agglomerative methods limits their 
ability to scale up to ever-larger data. CURE and CHAMELEON are computationally 
less demanding; BIRCH (Zhang, Ramakrishnan, and Livny 1996) was developed 
specifically to deal with large data sets, and can achieve a time complexity of O(n), 
that is, the time required grows linearly with the number of data objects. 

• Noise and outliers. 

Noise and outliers can adversely affect all the standard methods in the ways 
described above. Ideally, a clustering method would be resistant to the effect of 
outliers and noise, thereby offering stable clustering; all three methods mentioned 
above provide this to varying degrees. 

• Linear separability. 

• The non-single linkage hierarchical methods are limited to data with a linearly-
separable density structure because the Minkowski distance measures that the 
literature associates with them are linear. These methods neither know nor care how 
the values in the distance matrices on the basis of which they construct cluster trees 
were derived, and there is no obstacle in principle to using values generated by a 
nonlinear metric like the geodesic one described in the discussion of data geometry. 
This allows non-linearly separable regions to be separated nonlinearly and removes 
the linear separability limitation on non-single linkage hierarchical methods. 
Compare, for example, the Average Linkage trees for Euclidean and geodesic 
distance measures in Figure 4.41. 



Figure 4.41: Average Linkage hierarchical clustering applied to non-linearly separable data
using Euclidean and geodesic distance measures 

The Euclidean distance-based tree in Figure 4.41a shows the effect of the linear 
separability constraint already observed in the foregoing discussion, but the geodesic
distance-based one in 4.41a overcomes this by identifying clusters compatible with 
the density structure of the data, like Single Linkage does in Figure 4.41a. 

As usual, however, there is a caveat. The foregoing discussion of nonlinearity 
detection pointed out a potential disadvantage of the graph approximation to 
geodesic distance measurement: that it does not make the distinction between model
and noise which the regression-based approach makes, and treats the data matrix as
a faithful representation of the domain from which the data was abstracted. Because 
the graph distance-based approach includes noise, whether random or systematic, in
its calculations, this may or may not be a problem in relation to the application in 
question. 



4.3 Cluster validation 

The fundamental purpose of a cluster analysis method is to identify structure that might be 
present in data, that is, any non-regular or non-random distribution of points in the n-
dimensional space of the data. It is, however, a commonplace of the cluster analysis 
literature that no currently available method is guaranteed to provide this with respect to data
in general, and the foregoing discussion of a selection of methods confirms this: projection 
methods based on dimensionality reduction can lose too much information to be reliable, 
and the linear ones together with k-means and linear hierarchical methods fail to take 
account of any nonlinearity in the data; the reliability of the SOM, k-means, and Dbscan 
depends on correct parameterization; different hierarchical joining criteria can assign data 
points to different clusters and typically impose different constituency structures on the 
clusters. In addition, some methods impose characteristic cluster distributions on data even 
when the data are known not to contain such distributions or indeed to have any cluster 
structure at all. 

Figure 4.42: Regular distribution 

This is shown in Figure 4.43 for the regular distribution in Figure 4.42, where the distance 
between each point and its immediate neighbours is constant. 



Figure 4.43: Hierarchical analyses of the regular distribution in Figure 4.42 

Except for the limiting case where each point is regarded as a cluster on its own, the 
distribution in Figure 4.42 has no meaningful cluster structure, and the shape of the Single 
Linkage analysis reflects this. The Average Linkage tree, however, shows a rich and 
complex structure, and Complete Linkage and Ward’s Method generate almost identical 
trees; if the data were higher dimensional and thus not amenable to graphical confirmation, 
these latter results would be very misleading. k-means gives similarly misleading results, as 
Figure 4.44 shows. 



Figure 4.44: Two k-means analyses of the distribution in Figure 4.42 

It is not difficult to understand why these methods give the results they do: all are based on 
the notion of cluster centres, and all are consequently predisposed to find convex linearly-
separable clusters, as the literature has often observed. Understanding why does not, 
however, change the demonstrated fact that, by imposing this structure on data which lacks 
any meaningful cluster structure, these methods can give misleading results. Where the data
distribution is directly visualizable, as here, the problem can be identified, but for higher-
dimensional data, which cannot, it could easily pass unnoticed. 

Given these sources of unreliability, validation of cluster analytical results is required. One 
obvious and often-used approach to validation is to generate a series of results using 
methods based on different clustering criteria in the hope that they will mutually support one 
another and converge on a consistent solution: if a range of methods based on 
dimensionality reduction, topology preservation, proximity, and density give identical or at 
least compatible results, the intuition is that the reliability of the solution is supported by 
consensus. It would, however, be useful to supplement such a consensus with one or more 
alternative validating criteria. And, of course, there might not be a consensus, in which case 
a selection must be made, which implies selection criteria. This section presents a range of 
quantitative ones. 

The discussion is in two parts. The first part considers ways of determining the degree to 
which any given data has a cluster structure prior to application of clustering methods, 
known in the literature as ‘clustering tendency’. The motivation here is the observation that, if
data is known to contain little or no cluster structure, then there is no point to attempting to 
analyze it, and, if an analysis is carried out despite this, then the result must be an artefact of
the method. The second part then presents a range of validation criteria for results from 
application of different analytical methods to data known to contain cluster structure. 

4.3.1 Clustering tendency 

igure 4.45a shows a scatterplot 100 2-dimensional vectors, and 4.45b a Ward’s Method 
hierarchical analysis of them, using squared Euclidean distance. 



Figure 4.45: Cluster structure in random data 

The eye picks out regularities in the scatterplot – there appear, for example, to be two dense 
regions in the upper left and lower right triangles marked A and B, separated by an diagonal 
low-density area – and the tree confirms the intuition: there are two well-separated clusters, 
and each of these has its own internal structure which, if one looks hard enough, can be 
seen as variations of point density in the scatterplot. However, the data were produced by a 
random number generator, and so one knows a priori that they are random. The obvious 
conclusion is that that the fallibility of subjective visual interpretation of graphical information 
has once again been demonstrated, and that the tree is an artefact of the clustering method.
On the other hand, one might observe that finite sets of random numbers are typically not 
uniformly distributed but rather have local variations in density (Chaithin 2001), as is readily 
observable in the sequence of heads and tails as a coin is flipped, and argue that, the 
randomness of the data generator in the present case notwithstanding, it is a matter of 
empirical fact that there is observable structure in the data which the cluster tree has 
captured. Which interpretation is correct? Research into ways of answering the question is 
known as ‘assessment of clustering tendency’ (Jain and Dubes 1988: 201ff.), the aim of 
which is essentially to decide whether data are sufficiently nonrandom to merit investigation 
of the hypothesis that it contains meaningful cluster structure, though without attempting to 
identify whatever cluster structure might be present. There are two main approaches to 
assessment of clustering tendency, one graphical and the other statistical. 

Graphical tests for clustering tendency 



Where data are two or three-dimensional they can be scatter-plotted directly, and visual 
interpretation of the plot will reveal the presence or absence of structure. It is usual in the 
literature to express distrust in the subjectivity of graphical interpretation, but this subjectivity 
is a matter of degree. It would be unreasonable to deny that Figure 4.46a demonstrates the 
presence of cluster structure in the data underlying it, whereas 4.46b, repeated from 4.45, is 
more equivocal. 

Figure 4.46: Visual identification of cluster structure 

High-dimensional data can be reduced to dimensionality 2 or 3 for scatter-plotting, but, 
depending on the intrinsic dimensionality of the data, this might lose too much information to 
provide a reliable result. Visual Assessment of cluster Tendency (VAT) (Bezdek and 
Hathaway 2002) provides an alternative method for graphical representation of structure 
which can be applied to numerical data of any dimensionality. Given an m x n data matrix M, 
where m is the number of data objects and n the dimensionality, VAT is based on an n x n 
distance matrix D abstracted from M; any distance measure can be used, but Euclidean is 
assumed. The entries in D are rearranged so that the closer any two objects are to one 
another in the data space, the more spatially adjacent they are to one another in D. D is then
represented as an n x n two-dimensional grid G such that each grid cell Gij represents the 

value in Dij as a grey-scale colouring, where a value of 0 in D is represented in G as black, 

the maximum distance value as white, and points in between as regularly spaced intervals of
grey shading. Data points which are close to one another appear as dark blocks on the main
diagonal surrounded by lighter-coloured cells, and represent clusters. Figure 4.47 shows 
VAT graphs corresponding to the scatterplots 4.46. 



Figure 4.47: VAT graphs of the data underlying Figure 4.46 

The very distinct clusters of Figure 4.46a show as black blocks in 4.47a, and the far less 
distinct clustering of 4.46b is reflected in the less easily interpretable blocking of 4.47b. In 
every VAT image there is a line of singlecell dark blocks in the main diagonal reflecting the 
fact at every object is at distance-0 from itself, and for cluster identification this is without 
value; the larger blocks on the diagonal in 4.47b indicate some degree of clustering, but 
these are not nearly as distinct as those of 4.47a, reflecting the less definite clustering visible
in 4.46b. 

Applied to the two-dimensional data on which the Figure 4.46 plots are based, the VAT 
graphs of Figure 4.47 take us no further forward. The utility of VAT comes with higher 
dimensionality. Figure 4.48 shows the VAT graph for MDECTE, where a small block at the 
upper left and a much larger block on the lower right indicate two main clusters, and the 
larger block contains some evidence of subclustering. 



Figure 4.48: VAT graph of MDECTE 

Specifics of the algorithm used to rearrange the distance matrix are given in (Bezdek and 
Hathaway 2002), and enhancements to VAT in (Bezdek, Hathaway, and Huband 2006), (Hu 
and Hathaway 2008), (Wang et al. 2009), (Havens and Bezdek 2012), (Hu 2012). 

Statistical tests for clustering tendency 

Statistical identification of clustering tendency in data is based on testing the null hypothesis 
that the data are random and therefore have no cluster structure. This testing is done by 
comparing the data to what they would look like if they were random relative to some 
criterion. If the criterion indicates that the data deviate sufficiently from randomness, then the
null hypothesis is falsified and the alternative hypothesis, that the data have cluster 
structure, is adopted with some specified degree of confidence. Otherwise, the null 
hypothesis stands and the conclusion is that the data very probably contain no cluster 
structure. 

There are several ways of defining randomness in data (Jain and Dubes 1988: 144, 186ff. 
Gordon 1999). Relative to the geometric view of data on which the discussion has thus far 
been based, randomness is understood as the positioning of vectors in an n-dimensional 
space by a Poisson process, introduced earlier in the discussion. The dataset is compared 
to what it would have looked like if its had been generated by a Poisson process, and the 
comparison is based on the random position hypothesis, which says that data containing m 
points in n-dimensional space are random if all sets of k < m points in the space are equally 
likely to occur (Jain and Dubes 1988: 144f., 202ff.). To test for spatial randomness a statistic 
is derived from the data using some structure-sensitive measure, and if that statistic is 
sufficiently different from its value for random data, then the null hypothesis is rejected and 
the conclusion is that the data are nonrandom and therefore clustered in some way. Various 
such structure-sensitive tests exist – see Jain and Dubes (ibid.: 211ff.), Gordon (1999: 
188ff.), Everitt et al. (2011: Ch. 9.3). The one presented here, the Hopkins statistic, is 
selected both on account of its intuitive accessibility and demonstrated effectiveness (Jain 
and Dubes 1988: 218; Lawson and Jurs 1990; Banerjee and Dave 2004; Tan, Steinbach, 
and Kumar 2006: 547f.). 

Relative to some m x n matrix M, where m is the number of data objects and n the 
dimensionality, the Hopkins statistic determines whether the distribution of the m objects in 
the n-dimensional space deviates significantly from a random distribution of objects in that 
space. It does this on the basis of two measurements. The first measurement randomly 
selects k < m row vectors of M, and for each of these k vectors the distance to one or more 
of its nearest neighbours in M is calculated using some distance metric; the k nearest-
neighbour distances are then summed and designated p. The second measurement 
generates k vectors randomly distributed in the data space, and the nearest-neighbour 
distances between each of these k vectors to the row vectors of M are calculated and 
summed, and designated q. The Hopkins statistic H is then defined by 



H is calculated multiple times and summed, each time using a new random selection of k 
data vectors and a new set of k random vectors, and the mean of the sum is taken to be an 
indication of how far the distribution is from randomness. The reasoning here is as follows. If 
the data distribution is random then p and q will, on average, be the same, and the above 
formula gives 0.5; this is the baseline value for random data. If the data distribution is not 
random then p will on average be smaller than q because the neares tneighbour distances 
between clustered points in a data space are on average smaller than between randomly-
distributed ones. In such a case the value of the (p+q) term is smaller than when p = q, 
which gives increasingly larger H-values as p approaches 0 up to a maximum H = 1. 

The mean value of H was calculated for both the distributions of Figure 4.46 and for 
MDECTE, in each case summing 50 H-values: for 4.46a Hmean = 0.95, for 4.46b Hmean = 
0.56, and for MDECTE Hmean = 0.87. The H-value for 4.46a confirms the graphical 
impression of strong clustering, the H-value for 4.46b disambiguates the plot and the VAT 
graph, confirming that the data is indeed very nearly random, and the H-value for MDECTE 
indicates substantial non-randomness. 

For general discussions of clustering tendency see Jain and Dubes (1988: Ch. 4.6), Gordon 
(1999: Ch.7), Tan, Steinbach, and Kumar (2006: Ch. 8.5.6), Everitt et al. (2011: Ch. 9.3). 

4.3.2 Validation 

We have seen that clusters can have a variety of shapes, and that clustering methods do not
cope equally well with identifying different varieties. Because each method has different 
criteria for identifying clusters, each has a predisposition to find certain kinds of structure, 
and this predisposition can prevent it from identifying other kinds of structure or cause it to 
impose the structure it is designed to find on data (Gordon 1998, 1999; Handl, Knowles, and 
Kell 2005). For example, k-means builds clusters on the basis of distance from specified 
centers and so has a strong predisposition to find spherical clusters; where the data’s 
intrinsic cluster structure is spherical, or at least roughly so, this is exactly what is required, 
but where not k-means gives a distorted representation of the intrinsic structure. Single 
Linkage hierarchical clustering, on the other hand, is good at finding irregularly-shaped 
clusters but obscures sphericity with chaining where these are not well separated or where 
the data are noisy. And so on. In general, therefore, a good match between intrinsic data 
structure and clustering method yields good insight into the data, and a poor match is 
misleading (Jain 2010). The intrinsic structure of data is, however, usually not known in 
advance. The aim of cluster analysis, after all, is to identify it, and if it were known there 
would be no point to an analysis. As such, there is no obvious a priori way of matching the 
given data to the appropriate clustering method, and consequently no a priori way of 
knowing how well a clustering result represents the intrinsic cluster structure. 

One possible response to this is that it doesn’t matter when, as here, cluster analysis is used
as a tool for hypothesis generation, because the aim is to stimulate ideas which lead to 
hypotheses about the research domain from which the clustered data was abstracted, and a 
poor hypothesis based on a poor analysis can be falsified and eliminated in subsequent 
hypothesis testing. There is no obvious objection to this in principle, but in practice it is 
inefficient. A more efficient alternative is to base hypothesizing on clustering results in whose
accuracy one can have a reasonable degree of confidence. Cluster analysts have 
increasingly taken the latter view and have developed a general methodology for providing 



that confidence, whereby a given data set is multiply analyzed using different clustering 
methods and different parameterizations of each method, and the result which best 
represents its intrinsic cluster structure is selected. The problem, of course, is knowing which
is best; this section outlines the current state of cluster validation strategies and methods 
designed for that purpose. 

A traditional and commonly-used criterion for cluster validation is domain knowledge, 
whereby a subject expert selects the analysis which seems most reasonable in terms of 
what s/he knows about the research area. This has some validity, but it is also highly 
subjective and runs the risk of reinforcing preconceptions and discounting the unexpected 
and potentially productive insights which are the prime motivation for use of cluster analysis 
in hypothesis generation, as already noted. Domain knowledge needs to be supported by 
objective criteria for what counts as ‘best’; the remainder of this section outlines such criteria.

The foregoing account of clustering tendency has already dealt with part of the problem of 
cluster validation: that the given data are random, and that any clustering result is therefore 
an artefact of the analytical method used. The discussion to follow assumes that the result to
be validated is based on data known to be sufficiently non-random to be meaningfully 
clustered, and that the aim of validation is to determine how close it has come to identifying 
the non-random structure, that is, to finding the correct number of clusters on the one hand, 
and to assigning the correct data objects to each of the clusters on the other. The literature 
contains numerous methods for doing this. Decades ago (Milligan and Cooper 1985) 
assessed the performance of no fewer than 30 of them, and many have been proposed 
since, so there is no hope of being able to cover them comprehensively, and a selection 
strategy is required. The literature distinguishes a class of “external” methods which assume 
the existence of a priori reliable information about what the structure found by cluster 
analysis should look like, and which thereby provides an independent criterion relative to 
which a clustering can be assessed. When external information is available the sensible 
course is to use it. However, where cluster analysis is used for hypothesis generation, as 
here, the implication is that it is so used because no clear prior information about the 
structure of the data is available. As such, the external approach to cluster validation is only 
tangentially relevant here, and nothing more is said about it; for further information see (Gan,
Ma, and Wu 2007; Halkidi, Batistakis, and Vazirgiannis 2001; Halkidi, Vazirgiannis, and 
Batistakis 2000; Jain and Dubes 1988: Ch. 4). What remains is a still-sizable number of 
validation methods. These are categorized by the approach they take to validation and 
exemplified with a small selection of methods. The result is an introduction to a complicated 
topic, and the further readings cited in the course of discussion are an indispensable adjunct 
in any serious research application. 

Note that the methods described in what follows apply only to so-called ‘crisp’ clustering, 
where each data object is assigned to one and only one cluster, and not to fuzzy clustering, 
where a data object may belong to one or more cluster; fuzzy clustering (Gan, Ma, and Wu 
2007: Ch. 8) is not covered in this book. 

Cluster validation with respect to cluster compactness and separation 

The validation methods in this category assess a given clustering in terms of how well it 
adheres to the proximity-based cluster definition with which this chapter began: a cluster is 
an aggregation of points in the test space such that the distance between any two points in 



the cluster is less than the distance between any point in the cluster and any point not in it. 
They are therefore applicable only when the underlying data density structure is linearly 
separable. The two criteria most often used are compactness and separation – cf., for 
example, Halkidi, Batistakis, and Vazirgiannis (2001), Handl, Knowles, and Kell (2005), and 
Liu et al. (2010) . 

• Compactness. 

Compactness is the degree to which the members of a proposed cluster are similar 
to one another. The Root Mean Square Standard Deviation (RMSSTD) validity index 
– cf. Sharma (1996), Halkidi, Batistakis, and Vazirgiannis (2001), Gan, Ma, and Wu 
(2007: Ch. 17.2.6) – measures cluster compactness as the degree of variability 
among the component vectors of a cluster, and more specifically as the mean 
deviation of the members of the cluster from the cluster centroid expressed as a 
standard deviation: the smaller the deviation, the more compact the cluster. Relative 
to a cluster C containing k n-dimensional vectors, the sum of squared deviations (SS)
from the cluster centroid is first calculated: 

The RMSSTD is then the square root of the mean SS, 

Figure 4.49 exemplifies the application of this measure to three clusters of varying 
visual compactness. 



Figure 4.49: The Root Mean Square Standard Deviation (RMSSTD) for clusters of varying
compactness 

Cluster B is slightly less compact than A and its RMSSTD is correspondingly slightly 
larger, whereas the far less compact cluster C has a much larger RMSSTD than 
either A or B. Because the index is expressed as a standard deviation and is thus a 
value in the range 0...1, moreover, its significance is readily interpretable. 

• Separation. 

Separation is the degree to which compact clusters are distant from one another, and
RS – cf. Sharma (1996), Halkidi, Batistakis, and Vazirgiannis (2001), Gan, Ma, and 
Wu (2007: Ch. 17.2.7) – is a measure of separation. It is based on the sum of 
squared differences (SS) as described in the discussion of RMSSTD . Assume a data
matrix M in which the m rows have been partitioned into k clusters c1,c2 ...ck. Three 

types of SS are distinguished. Firstly, the SS for each of the clusters cj is calculated 

and the k SS values are summed to yield SSw, where w stands for ‘within cluster’. 

Secondly, the SS for the whole matrix M is calculated to give SSt, where t stands for 

‘total data’. Finally, the between-cluster sum of squared differences SSb is calculated 

by observing that SSt = SSw+SSb, so that SSt −SSw = SSb. On this formulation, the 

smaller the value of SSw the larger the SSb. But from the discussion of RMSSTD it 

follows that the smaller the SSw the more compact the clusters. The larger the SSb, 

therefore, the more compact the clusters and the larger the separation between 
them. SSb is thus measure of cluster separation. RS expresses this measure as a 

ratio of SSb / SSt to give a readily interpretable range 0... 1, so that larger RS values 

in this range indicate greater cluster separation and smaller ones lesser separation. 
This is exemplified in Figure 4.50. The clusters in 4.50a are more compact and better
separated than those in 4.50b; the SSb and the SSb / SSt ratios are commensurately 

larger for 4.50a than for 4.50b. 



Figure 4.50: Measures of separation between clusters 

Most of the validation methods in this category combine compactness and separation 
measures into a single index. A long-established one still much used today is Dunn’s index 
(Dunn 1974), the essential idea of which is that the ratio of the smallest distance between 
any two clusters to the size of the largest cluster in any clustering is a useful measure of its 
compactness and separation. Given a data matrix D of m n-dimensional row vectors and a 
partition of the Di into a set of k clusters C = c1,c2 ... ck, Dunn’s index is defined as 

where dist measures the cluster separation and size the compactness. The value of 
Dunn(C) depends on the selection of measures used to calculate these. For dist the various 
linkage methods discussed in relation to hierarchical analysis, such as Single and Complete 
Linkage, can be used, and the size of a cluster can be calculated using, for example, 
average distance among cluster members or average distance to the cluster centroid (Brun 
et al. 2007). The essence of the measure remains the same across these specifics, 
however. The smaller the distance between clusters and the larger the size of the largest 
cluster, the less compact and well-separated the clusters are and the smaller the value of 
Dunn(C). Conversely, the larger the distance between clusters and the smaller the size of 
the largest cluster the more compact and well separated they are, and the larger the value of
Dunn(C). Using average Euclidean distance between and within clusters to measure both 
cluster separation and compactness, the Dunn index value for the compact and well-
separated clusters of Figure 4.50a is 4.804 and for the less compact and well separated 
ones of 4.50b is 1.103. 

This index can be used to select the best from a set of candidate clusterings by applying it to
each of the candidates and identifying the one with the highest index value. For example, 
MDECTE was k-means clustered for values of k in the range 2...12 and the Dunn index 
values calculated and plotted, as in Figure 4.51. This indicates that the optimum number of 
clusters is 2. 



Figure 4.51: Dunn index values for k-means clustering of MDECTE, k in the range 2...12 

Various modifications to Dunn’s original formulation have been proposed. Bezdek and Pal 
(1998), for example, observed that it is highly sensitive to noise and outliers and can 
therefore produce misleading results in data where these are present, and proposed 
modifications to mitigate this. Where these are present or suspected of being present, 
therefore, the reformulation by Bezdek and Pal (ibid.) should be used. For further discussion 
of the Dunn index see Stein, Eissen, and Wissbrock (2003), Gan, Ma, and Wu (2007: Ch. 
17.2.3). 

Another traditional index that combines cluster compactness and separation is that proposed
by Davies and Bouldin (1979), defined for the above D and C as in 

where δi and δj are the average distances of all vectors in clusters ci and cj from their 

respective cluster centroids, and distance is the distance between the centroids of ci and cj . 

The δ terms measure the compactness of two clusters in terms of the degree of dispersion 
of their members, and the Davies-Bouldin (DB) index is therefore the average cluster 
dispersion to cluster distance ratio. The greater the dispersion and the smaller the distance 
the less compact and well-separated the clusters, and the larger the value of DB(C). And, 
conversely, the smaller the dispersion and the larger the distance the more compact and 
better-separated the clusters, and the smaller the index value. Applied to the data underlying
the plots in Figure 4.50, the DaviesBouldin index value for the compact and well-separated 
clusters of 4.50a is 0.048 and for the less compact and well separated ones of 4.50b is 
0.145. 

Like the Dunn index, DB can be used to select the best from a set of candidate clusterings 
by applying it to each of the candidates and identifying the one with the smallest index value.
This was done for k-means clustering of the data underlying the scatterplots in Figure 4.50 
as for Dunn, and the results are plotted in Figure 4.52; as before, the indication is that the 
optimum number of clusters is 2. 



Figure 4.52: DB index values for k-means clustering of MDECTE, k in the range 2...12 

Methods similar to Dunn and Davies-Bouldin are reviewed in Halkidi, Batistakis, and 
Vazirgiannis (2001), Handl, Knowles, and Kell (2005), and Gan, Ma, and Wu (2007: Ch.17); 
more recent developments of the cluster compactness / separation approach are SD Halkidi,
Vazirgiannis, and Batistakis (2000) and CDbw (Halkidi and Vazirgiannis 2008). Banerjee and
Dave (2004) take a different approach by adapting the Hopkins statistic used for clustering 
tendency to assessment of cluster compactness and separation. 

Cluster validation of constituency structure 

Like proximity-based nonhierarchical clustering methods, hierarchical ones partition data 
objects into discrete subsets. Where the partitional methods represent proximity relations 
among data objects in high-dimensional space as relative proximity among them in low-
dimensional space, however, hierarchical methods represent these relations as a 
constituency structure which can be graphically represented as a dendrogram. As we have 
seen, different joining criteria used by the various hierarchical methods for building such 
constituency structures are based on different views of what constitutes a cluster, and, with 
respect to any given data matrix, the consequent expectation is that they will generate 
different structures. This expectation is routinely confirmed empirically. The question of which
structure best captures the proximity relations among the data objects therefore arises, and 
the answer requires a validation index which, unlike the ones presented so far, is able to 
evaluate such structure. 

The cophenetic correlation coefficient ((Sokal and Rohlf 1962), (Sneath and Sokal 1963), 
(Rohlf 1974), (Baker and Hubert 1975)) measures the degree of consistency between the 
distance matrix underlying the cluster tree and another matrix, the ‘ultrametric’ or 
‘cophenetic’ matrix derived from the table of joins, and is standardly used in validation of 
hierarchical clustering, and so is described in what follows. Given a data matrix M and a 
hierarchical clustering of M, the cophenetic correlation coefficient for the clustering is 
calculated using two matrices: the distance matrix D derived from M on which the clustering 
is based, and the cophenetic distance matrix. The first of these is familiar. Construction of 
the second is easier to exemplify than to describe. The example is taken from the foregoing 
discussion of hierarchical clustering, where a small subset of the first 6 rows of the full 63 
rows of MDECTE was used as data. 

Table 4.10 shows the Euclidean distance matrix abstracted from the data, and 

Table 4.10: Euclidean distance matrix D 



Table 4.11 shows the table of joins constructed by the clustering algorithm, and 

Table 4.11: Table of joins 

Figure 4.53 shows the cluster tree corresponding to the table of joins. 

Figure 4.53: Tree representation of table of joins 

The cophenetic distance between two rows Di and Dj is the distance at which they become 

members of the same cluster for the first time. These distances are found in the table of 
joins, and, using them, a matrix C containing the cophenetic distances between Di and Dj is 

constructed. Referring to Table 4.12, the construction procedure is as follows. 



Table 4.12: Cophenetic proximity matrix C for tree in Table 4.11 and Figure 4.53 

Starting at the top of Table 4.11 and working downwards, (1) and (3) become part of the 
same cluster at cophenetic proximity 59.0; this value is entered at the corresponding 
coordinates in Table 4.12. (1,3) and (6) become part of the same cluster at cophenetic 
proximity 69.3; this value is entered at coordinates ((1),(6)) and ((3),(6)) in Table 4.12. 
((1,3),6) and (4) become part of the same cluster at cophenetic proximity 78.9; this value is 
entered at coordinates ((1),(4)), ((3),(4)), and ((6),(4)) in Table 4.12, and so on. When 
complete, the cophenetic proximity matrix shows, for each pair of data objects, the proximity 
value at which they become part of the same cluster. 

Once the cophenetic distance matrix is constructed it can be compared to the Euclidean 
distance matrix to see how similar they are and thereby the degree to which the clustering 
from which the cophenetic matrix was derived preserves the distance relations among the 
data objects as represented by the Euclidean distance matrix. This can be done in various 
ways, the simplest of which is to row-wise linearize the two matrices and then to calculate 
their Pearson correlation coefficient, which gives the cophenetic correlation coefficient; the 
linearization is shown in Table 4.13 broken in the middle to fit on the page. 

Table 4.13: Row-wise linearized distance (D) and cophenetic (C) matrices 

The Pearson correlation coefficient of the vectors in Table 4.13 is 0.96, a high correlation 
which shows that the cluster structure in Figure 4.53 well represents the distance relations 
between data objects. 

The cophenetic correlation coefficient can be used to select the best from a set of 
hierarchical analyses of the same data. Figure 4.54 shows three different analyses of the 
first 12 rows of MDECTE. 



Figure 4.54: Three hierarchical analyses of a matrix containing 12 rows randomly selected
from MDECTE 

As expected, the tree structures in Figure 4.54 are all different, so the problem of selection 
arises. Their cophenetic coefficients in descending order of magnitude are: Average Linkage 
0.81, Single Linkage 0.78, and Complete Linkage 0.61. The Complete Linkage tree is the 
most intuitively appealing in terms of its separation of the data into well-defined nested 
structures, but in terms of the degree to which it distorts the Euclidean distance structure of 
the data it is the worst. Average Linkage and Single Linkage, on the other hand, both show 
chaining but also substantially less distortion. It is known that Complete Linkage tends to 
impose well-separated spherical clusters on data whatever its structure; this observation, 
together with the numbers, means that the cophenetic correlation coefficient must overrule 
aesthetics, and the indication is that the data really does contain the chaining structure which
Average Linkage and Single Linkage display. 

The cophenetic correlation coefficient is a measure of the strength of the linear relationship 
between distance and cophenetic matrices, but though it is widely used its validity for 
assessing the relative goodness of hierarchical clustering results has been disputed. Gordon
(1996), for example, considers that it “does not seem a very relevant measure”, suggesting 
instead the Goodman-Kruskal lambda measure (Goodman and Kruskal 1954), and warns 
against “the incautious use of criteria that almost always produce misleading results”. 

Cluster validation of topology preservation 

Preservation of manifold topology differs from preservation of linear distances among the 
data points which constitute it, as explained earlier, and as such the SOM or any other 
topology-preserving clustering method cannot be assessed by validation indices designed 
for distance-preserving methods. This section outlines two alternative indices for the SOM. 



The foregoing discussion of the SOM noted that, where the intrinsic dimensionality of data is 
greater than the dimensionality of the output lattice, some distortion of the topology of the 
input manifold is to be expected. The discussion also noted that different selections of initial 
parameter values such as the locations of the Voronoi centroids, lattice size and shape, and 
different sequencings of training data items can generate different cluster results, and this 
calls the status of the result as a reliable representation of the intrinsic data structure into 
question. One approach to SOM assessment is to attempt to identify an objective function 
which the SOM optimizes and, using that function, to select the optimal result in any specific 
application, as with MDS, Sammon’s Mapping, and Isomap. It has been shown that a 
general objective function applicable across all SOM parameterizations does not exist 
(Erwin, Obermayer, and Schulten 1992); an objective function does exist for every SOM with
a specific lattice dimensionality, lattice size, and neighbourhood size, relative to which an 
error value can be calculated, but error values for differently-parameterized SOMs cannot be
reliably compared to assess their relative goodness. 

Two alternative criteria that have been developed are quantization error and topology 
preservation error; for these and others see De Bodt, Cottrell, and Verleysen (2002a,b). 

• Quantization error. 

As noted in the discussion of the SOM, the process of finding a centroid vector which
is intermediate between the k vectors of a Voronoi partition in the course of SOM 
training is known as vector quantization: for a set V of k vectors, find a ‘reference’ 
vector vr of the same dimension as those in V such that the absolute difference d = |
vr −vi | between each vi ∈ V and vr is minimized. The SOM training algorithm 

quantizes the input vectors, and the reference vectors are the result (Ritter, 
Martinetz, and Schulten 1992: ch.14), (Van Hulle 2000: ch.2), (Kohonen 2001: pp.59-
60), (De Bodt, Cottrell, and Verleysen 2002a), (De Bodt, Cottrell, and Verleysen 
2002b). Quantization error is a measure of how close the reference vectors are to the
data vectors, or, in other words, how well the SOM has learned the data, and is 
calculated as the average of the sum of Euclidean distances between each data 
vector and the reference vector which the SOM training has most closely associated 
with it. 

• Topology preservation error. 

• Unlike the PCA projection, which tries to preserve as much of the data variance as 
possible, and unlike the projections generated by MDS and its derivatives, which try 
to preserve relative distances among points in the data space, the SOM projection 
aims to preserve the topology of the data, and the topology preservation error is a 
measure of how well it has done this in any particular application. We have seen that 
the topology of an n-dimensional data manifold D containing m points is the set of 
neighbourhoods of each point Di in the manifold, for i = 1...m, where a 

neighbourhood of Di is the set of other points within some distance of it, and distance

is defined relative to a metric like the Euclidean either as a radius centred on Di or 

some number k of nearest neighbours of Di. A projection of D into a reduced-

dimensionality space D′ is topology-preserving if the neighbourhoods in D and D′ are 



the same, that is, Di and the point in D′ to which it projects have the same 

neighbours. Various ways of measuring deviations from topology preservation have 
been proposed for the SOM : Bauer and Pawelzik (1992), Villmann, Der, and 
Martinetz (1994), Kaski and Lagus (1996), Kiviluoto (1996), Villmann et al. (1997), 
Kaski (1997), Venna and Kaski (2001), De Bodt, Cottrell, and Verleysen (2002b)); 
review in Pölzlbauer (2004). 

The one proposed in Kiviluoto (1996), called ‘topographic error’, is selected for 
description here on account of its intuitive simplicity. It assesses topology 
preservation as the degree to which the mapping from the input manifold to the SOM 
lattice is continuous, where continuity means that points which are adjacent in the 
manifold are also adjacent in its projection. In a SOM trained to project D onto its 
lattice, every point Di is associated with a lattice cell standardly referred to as the 

‘best matching unit’. Where the mapping is continuous, the second-best matching 
unit will be adjacent to the best-matching one; where it is not adjacent, there is a 
local failure in continuity and with it of topology preservation. Topographic error is 
defined as the proportion of all data points Di for which the first and second best-

matching units are not adjacent: the lower the topographic error, the better the SOM 
preserves the topology of D. The topographic error function is shown in 

where u is a function that returns 0 if the best matching unit and second best 
matching unit are adjacent in the lattice and 1 otherwise. 

Selecting the best from a set of SOM analyses generated using different parameter values is
a matter of choosing the one that minimizes both the quantization and topology preservation 
errors. This is exemplified in Figure 4.55, which plots the behaviour of the quantization and 
topology preservation errors as the dimension of a square SOM lattice is increased in 
increments of 1 from 2×2 to 60×60, in each case training the SOM on MDECTE with random
selection of training vectors. The indication of Figure 4.55 is that a lattice size of about 
25×25 is optimal for projection of the MDECTE data. 



Figure 4.55: Co-plot of quantization errors and topographic errors for increasing SOM lattice
size relative to MDECTE 

Stability assessment 

Stability assessment successively applies a given clustering scheme, that is, some 
combination of clustering method and parameterization , to a given data matrix and to 
multiple versions of that matrix which have been perturbed in some way, and observes the 
behaviour of the cluster result with respect to the original matrix and to each of the perturbed
ones. If the cluster result does not change it is stable, and if it does then the result is 
unstable to proportion to the degree of change. The relative stability of the result is on 
statistical grounds taken to indicate the extent to which the cluster result captures the 
intrinsic cluster structure of the data (Ben-Hur, Elisseeff, and Guyon 2002; Hennig 2007; Jain
and Moreau 1987; Lange et al. 2004; Levine and Domany 2001; Pascual, Pla, and Sanchez 
2010; Roth et al. 2002).

There are various ways of perturbing data, but Jain and Moreau (1987), who first proposed 
this approach, used bootstrapping, and this is described here. Given a set of k equal-size 
samples S1,S2 ...Sk from a population P and a corresponding set of data matrices 

D1,D2 ...Dk abstracted from the Si , a clustering C is stable to the extent that the C1,C2 ...Ck 

applied to the Di are the same, assuming that the clustering method and its parameterization

remain constant. 

In most practical applications all one has is a single sample S0 and repeated sampling of the

population from which it came is not feasible, but the k-sample sequence can be simulated 
using bootstrapping, which works as follows. Assume that the data matrix D0 abstracted 

from S0 contains m rows and n columns. Then D1 is an m x n matrix each of whose rows is 

randomly selected from D0; repeated selection of the same row is allowed, so D1 may be but

probably is not identical to D0. Each successive D2 ...Dk in constructed in the same way. 

This looks at first glance like what Jain and Dubes (1988: 159) called “a classy way of 
cheating”, but bootstrapping is a standard approach to estimating population statistics 
(Hennig 2007), and can respectably be used here as a substitute for actual multiple 
population sampling. 

Once the Di have been generated, the original data matrix D0 is clustered to give C0, and 

each of the bootstrap data matrices D1,D2 ...Dk is clustered to give C1,C2 ...Ck. The 

similarity of each of the Ci to C0 is then calculated to give an index value I(Ci ,C0), the k 

index values are summed, and the mean of the sum is taken to be a measure of the stability 
of C: the larger the mean, the greater the similarity of the bootstrapped clusterings to C0, 

and therefore the greater the stability of C0 across multiple bootstrapped samples. There are

many ways of measuring the similarity between clusters (Gower and Legendre 1986), but 
the present discussion follows Ben-Hur, Elisseeff, and Guyon (2002) and Hennig (2007) in 
adopting the Jaccard coefficient, which measures the similarity of two sets A and B as in 



∪where ∩ is the set-theoretic intersection and  the union of A and B. In the present 
application, the Jaccard coefficient is used to compare two clusters, A from C0 and B from 

Ci, and is the ratio of the number of objects which are both in A and B to the number of 

objects in either A or B or both. For two clusterings C0 and Ci , each cluster in C0 is paired 

with the corresponding cluster in Ci and the Jaccard index is calculated for each pair; the 

index values are summed, and the mean of the sum is the Jaccard index for C0 and Ci . The

stability index can be used just like the other types of validation index already discussed to 
look for an optimal clustering scheme by applying the above procedure to each such scheme
and then selecting the scheme that generates the most stable clustering result. 

Validation was until fairly recently the Cinderella of cluster analysis. Some early work on the 
topic has been cited; surveys of it are available in Dubes and Jain (1979), Milligan and 
Cooper (1985) and Milligan (1996), and the discussion in Jain and Dubes (1988) remains 
fundamental. It is, however, only since the fairly recent surge in availability and size of digital 
data and the consequent growth in the use of clustering as an analytical tool across the 
range of sciences that the importance of cluster validation has come to be appreciated, and 
this has in turn generated an increasingly copious research literature which evaluates 
existing methods and either proposes modifications which address perceived shortcomings 
or entirely new ones. Examples are: Halkidi, Batistakis, and Vazirgiannis (2001, 2002a,b), 
Halkidi and Vazirgiannis (2008), and Halkidi, Vazirgiannis, and Batistakis (2000), Maulik and 
Bandyopadhyay (2002), Bolshakova and Azuaje (2003), Stein, Eissen, and Wissbrock 
(2003), Kim and Ramakrishna (2005), Kovacs, Legany, and Babos (2006), Brun et al. 
(2007), Temizel et al. (2007), Dalton, Ballarin, and Brun (2009), Deborah, Baskaran, and 
Kannan (2010), Kryszczuk and Hurley (2010), Liu et al. (2010), Rendon et al. (2011), 
Baarsch and Celebi (2012), Mary and Kumar (2012). Overviews of the state of work on 
cluster validation are given in Halkidi, Batistakis, and Vazirgiannis (2002a,b), Handl, 
Knowles, and Kell (2005), Tan, Steinbach, and Kumar (2006: Ch. 8.5), Gan, Ma, and Wu 
(2007: Ch. 17), Xu and Wunsch (2009: Ch. 10), Everitt et al. (2011: Ch. 9.4), Mirkin (2013: 
ch. 6). 

What emerges from these discussions and others like them is that, at present, cluster 
validation methods are far from foolproof. Much like the clustering methods they are 
intended to validate, they have biases which arise on account of the assumptions they make 
about the nature of clusters and about the shapes of the manifolds which clustering purports 
to describe (Handl, Knowles, and Kell 2005; Jain and Dubes 1988; Jain, Murty, and Flynn 
1999: Ch. 3.3). Because of these biases the various methods can be unevenly effective and 
even misleading, as empirical studies of their application to different data and cluster shapes
demonstrate. This is especially true of traditional validation methods based on cluster 
compactness and separation such as Dunn and Davies-Bouldin, which work well on data 
whose density structure is linearly separable but not otherwise, though progress in this area 
is being made via incorporation of density measurement into indices like CDbw (Halkidi and 
Vazirgiannis 2008). Brun et al. (2007) are pessimistic about prospects, but the current 
consensus appears to be that, despite their problems, cluster validation methods provide 



information which is not otherwise available, and as such they both reduce the risk of 
misinterpreting results and increase confidence in them. In any clustering application, 
therefore, a range of results should be generated using different clustering methods and 
parameter values, and these results should be assessed using appropriate validation 
indices. This can be onerous, but it is essential. As Jain and Dubes (1988) noted, “the 
validation of clustering structures is the most difficult and frustrating part of cluster analysis” 
but, without it, “cluster analysis will remain a black art accessible only to those true believers 
who have experience and great courage” 



5 Hypothesis generation 

The preceding chapters have 

– identified a research domain: the speech community of Tyneside in north-east 
England;

– asked a research question about the domain: is there systematic phonetic variation in
the Tyneside speech community, and, if so, does that variation correlate 
systematically with social variables? 

– abstracted phonetic frequency data from the DECTE sample of speakers and 
represented them as a matrix MDECTE; 

– normalized MDECTE to compensate for variation in interview length and reduced its 
dimensionality; 

– described and exemplified application of a selection of cluster analytical methods to 
the transformed MDECTE data. 

The present chapter develops a hypothesis in answer to the research question based on 
cluster analysis of MDECTE. The discussion is in two main parts: the first part reviews and 
extends the clustering results presented so far, and the second uses these extended results 
to formulate the hypothesis. 

5.1 Cluster analysis of MDECTE

Apart from Dbscan, where variation in data density was a problem, all the cluster analyses in
the preceding chapter agreed that there are two highly distinctive clusters in MDECTE: a 
larger one containing speakers g01 to g56, and a smaller one containing speakers n57 to 
n63. These are not exhaustively repeated here; the MDS result in Figure 5.1 is given as 
representative. The agreement of all the methods on the two-cluster structure obviates the 
need for validation of individual results. 



Figure 5.1: Multidimensional scaling analysis of MDECTE 

These results also show subsidiary structure in both main clusters. The structure in the 
smaller one is of less interest for present purposes than that of the larger, for reasons that 
will emerge, so the focus in what follows will be on the latter. To examine the structure of the 
g01 to g56 cluster more closely, the rows from n57 to n63 were removed from MDECTE. 
The row-reduced MDECTE56 was then re-analyzed using the methods applied to the full 
MDECTE in the preceding chapter. 

5.1.1 Projection methods

The first step in the re-analysis was to apply the projection clustering methods, the results of 
which are given in Figures 5.2–5.6; the inset in each is intended to show the shape of the 
distribution unobscured by the speaker labels. 



Figure 5.2: PCA clustering of MDECTE56 

Figure 5.3: Nonmetric MDS clustering of MDECTE56 



Figure 5.4: Sammon’s Method clustering of MDECTE56 

Figure 5.5: Isomap clustering of MDECTE56, k = 7 



Figure 5.6: SOM clustering of MDECTE56 

The SOM topology preservation indices given in the validation section of the previous 
chapter indicate that the 25 × 25 lattice given in Figure 5.6 is optimal, but apart from that 
none of these projections is particularly reliable. For PCA the first two dimensions 
represented in Figure 5.2 capture only 34.2 percent of the cumulative variance, for MDS and
Sammon’s Mapping the stress associated with dimensionality 2 is relatively high, and so is 
the residual variance for embedding dimensionality 2 for Isomap. None of the projections 
show any visually very clear cluster structure, moreover: PCA, MDS, Sammon, and Isomap 
all show a single cluster with a relatively few outlying points, and the U-matrix representation
of the distribution of data points in the SOM lattice shows no obvious cluster demarcations. 

5.1.2 Nonhierarchical partitional methods

Application of Dbscan to MDECTE56 required experimentation with numerous combinations 
of MinPts and Eps parameters to determine the optimal ranges of both, where optimality was
judged as lying between combinations which designated all data points as noise points on 
the one hand, and those which included all data points in a single cluster. The number of 
clusters is not prespecified for Dbscan but is inferred from the density structure of the data, 
and for no combination of parameters was anything other than a two-cluster structure found. 
The optimal range for MinPts was found to be 2...5, and for Eps 59... 61; the partition given 
for MinPts = 4 and Eps = 60 in Table 5.1 is representative of clustering results for these 
ranges. 



Table 5.1: Dbscan clustering of MDECTE56 

To determine the optimal number of k-means clusters, k-means was applied to MDECTE56 
for k = 1...10, and for each value of k ten different initializations of cluster centers were used.
The Dunn and Davies-Bouldin indices for this range of k indicated that k = 2 and k = 3 were 
roughly equally optimal, the results for which are shown in Tables 5.2 and 5.3. 

Table 5.2: k-means partition of MDECTE56 for k = 2 

Table 5.3: k-means partition of MDECTE56 for k = 3 

The k = 2 and k = 3 clusterings relate to one another as follows: 

• With two exceptions, cluster 1 for k = 2 is the same as cluster 1 for k = 3. The 
exceptions are that k = 3 cluster 2 adds g04 and deletes g37.



• With two exceptions, cluster 2 for k = 2 has been split into clusters 2 and 3 for k = 3. 
The exceptions are that k = 3 cluster 3 loses g04 to k = 3 cluster 1 and receives g37 
from k = 2 cluster 1. 

In other words, cluster 1 remains is the same for both, k = 2 cluster 2 splits into k = 3 clusters
2 and 3, and two speakers g04 and g37 are exceptions. 

The relationship between the k-means and Dbscan results is straightforward: 

• For k = 2 Dbscan cluster 1 is a subset of k-means cluster 1, and Dbscan cluster 2 is 
a subset of k-means cluster 2, with the exception of g04 which is in different clusters 
in Dbscan and k-means.

• For k = 3 the result is the same as for k = 2 in that none of the k-means cluster 2 data
points are in either Dbscan cluster. 

5.1.3 Hierarchical partitional methods 

Trees for Single, Complete, Average, and Ward Linkage analyses of MDECTE56 are given 
in Figures 5.7–5.10 using both Euclidean and geodesic distance. 



Figure 5.7: Single Linkage analysis of MDECTE56 

Figure 5.8: Complete Linkage analysis of MDECTE56 



Figure 5.9: Average Linkage analysis of MDECTE56 



Figure 5.10: Ward Linkage analysis of MDECTE56 

The initial visual impression is that these trees are all very different except for the Euclidean 
and geodesic Single Linkage ones, which are identical, but closer examination of them 
reveals regularities common to them all: among others, for example, the sets of data points 
(4 14 19 24 27 31 46 48 50 51) and (1 3 6 8 11 16 22 36 38 40 43 49 52) are in different 
subtrees in all cases apart from the Average Linkage tree based on geodesic distance. The 
detailed structural information offered by the trees makes it difficult to gain an overall 
impression of the ways in which they coincide with and differ from one another, however; this
will emerge more clearly when the hierarchical results are compared with the nonhierarchical
partitional and projection results in the section that follows. 

5.1.4 Comparison of results 

Having applied the different clustering method categories to MDECTE56 individually, the 
next step is to correlate the results in order to determine the degree to which they are 
mutually supporting with respect to the cluster structure of the data. 



Comparison of projection and nonhierarchical partition results 

Comparison of the k-means k = 2 and k = 3 results with the projection ones are dealt with 
separately, beginning with the former; because the Dbscan clustering is a subset of the k-
means k = 2 one, the k-means k = 2 comparison subsumes it and there is consequently no 
need to deal with it separately. Figures 5.11–5.15 show the k-means partition for k = 2 on 
each of the projections, using the '*' symbol to represent data points belonging to k-means 

cluster 1, and ‘+’ for k-means cluster 2. 

Figure 5.11: k-means k = 2 partition correlated with PCA projection. k-means cluster 1 = *,
cluster 2 = + 



Figure 5.12: k-means k = 2 partition correlated with MDS projection. k-means cluster 1 = *,
cluster 2 = + 



Figure 5.13: k-means k = 2 partition correlated with Sammon’s Mapping. k-means cluster 1 =
*, cluster 2 = + 

Figure 5.14: k-means k = 2 partition correlated with Isomap. k-means cluster 1 = *, cluster 2
= + 



Figure 5.15: k-means k = 2 partition correlated with the SOM; k-means cluster 1 = *, cluster
2 = + 

In each case k-means for k = 2 partitions the projections into two regions, which are 
demarcated by dashed lines for convenience of reference. This is unsurprising because, as 
we have seen, k-means clusters linearly separable regions of the data space, and the 
regions of the projections in Figures 5.11– 5.15 can be regarded as linearly separable when 
the distortions introduced by the projection methods are taken into account. 

As can be seen, k-means k = 3 differs from k = 2 only in dividing the k = 2 cluster 2 into two 
subclusters. Shown in relation to the PCA projection in Figure 5.16, the set of linearly 
separable outlying points noted earlier have been assigned to a separate cluster, leaving 
everything else the same. The situation for the other projections is analogous, and so there 
is no need to show these explicitly. 



Figure 5.16: k-means k = 3 partition correlated with the PCA projection; k-means cluster 1 =
*, cluster 2 = o, cluster 3 = + 

In summary, the k-means partitions for k = 2 and k = 3 are compatible with all the projections
in the sense that both assign the data points to disjoint linearly separable regions of the data
space. Based on projection and nonhierarchical partitional clustering methods, therefore, the
indication is that MDECTE56 has a two- or three-cluster structure, where the three-cluster 
one simply sub-partitions cluster 2 of the two-cluster one. It remains to see if this is 
compatible with results from hierarchical clustering. 

Comparison of projection and nonhierarchical partition with hierarchical clustering results 

In this section the hierarchical analyses are correlated with the Dbscan and k-means 
partitions of MDECTE56. Figures 5.17–5.20 represent Dbscan / k-means cluster 1 with the 
symbol ‘*' and Dbscan / k-means cluster 2 with ‘+’, as above. 

Figure 5.17: Single Linkage analysis of MDECTE56 with Dbscan and k-means (k = 2), where
* = Dbscan/k-means cluster 1, and + = cluster 2 



Figure 5.18: Complete Linkage analysis of MDECTE56 with Dbscan and k-means (k = 2),
where * = Dbscan/k-means cluster 1, and + = cluster 2 



Figure 5.19: Average Linkage analysis of MDECTE56 with Dbscan and k-means (k = 2),
where * = Dbscan/k-means cluster 1, and + = cluster 2 



Figure 5.20: Ward Linkage analysis of MDECTE56 with Dbscan and k-means (k = 2), where
* = Dbscan/k-means cluster 1, and + = cluster 2 

Using the additional information that the correlation with the Dbscan and k-means provides, 
the relationships among the various trees becomes clearer. 

• The Euclidean and geodesic distance based Single Linkage trees are identical, and 
differ from all the other trees in their characteristic chained structure. That chaining 
keeps all the data points corresponding to those in Dbscan cluster 1 and all the 
points corresponding to those in Dbscan cluster 2 together, and the rest of the 
structure is an apparently random mix of remaining points from the k-means clusters.
Single Linkage has, in other words, identified the same clusters as Dbscan, which is 
unsurprising because, as noted earlier, Single Linkage is a density-based clustering 
method unlike the other varieties of hierarchical analysis, which are distance-based. 

• Complete, Average, and Ward Linkage trees based on Euclidean distance are very 
similar though not identical, and correspond quite closely to the k-means partition for 
k = 3. In each case there are two main clusters corresponding to k-means clusters 1 
and 3 which are, respectively, supersets of Dbscan clusters 1 and 2. There is also a 
small number of data points clustered separately from the main ones. These latter 
points are observable as outliers or at the periphery of the main data cloud in the 



projection plots, and though the selection of points differs somewhat from tree to tree,
they correspond essentially to k-means cluster 2; the distributions are shown in Table
5.4. 

Table 5.4: The distribution of data points corresponding to k-means cluster 2 in the Euclidean
distance based Complete, Average, and Ward Linkage trees 

• The Complete, Average, and Ward Linkage trees based on geodesic distance differ 
more substantially from the k-means partitions than the corresponding Euclidean 
distance based ones. Like the latter, the Complete and Ward Linkage trees consist of
two large clusters corresponding largely to the k-means k = 3 clusters 1 and 3, and a 
single smaller one. The components of the smaller one are, however, not the outliers 
and data-peripheral points clustered in the Euclidean-based trees. Instead, the 
cluster consists of a subset of k-means cluster 3, and the outliers and data-peripheral
points are included in the main clusters. The Average Linkage tree, moreover, is 
much more complex than the other two geodesic distance based ones: like them, it 
has the small cluster, but it fragments the neat two-cluster structure of the remaining 
data points. 

In summary, all the hierarchical trees apart from the geodesic distance based Average 
Linkage one are compatible with k-means for k = 3 to the extent that they show two main, 
relatively large clusters and a small one. They differ, however, in the constituents of the small
cluster: the constituents in the Euclidean distance based trees correspond essentially to 
those of k-means cluster 2, while those in the geodesic distance based trees are a subset of 
k-means cluster 3. The exception, the geodesic distance based Average Linkage tree, 
shares the small cluster with the other geodesic trees, but fragments the two-cluster 
structure of the other trees for the remaining data points. 

5.2 Hypothesis formulation 



The first part of the research question, Is there systematic phonetic variation in the Tyneside 
speech community?, can now be answered affirmatively on the basis of the foregoing 
results. The DECTE speakers fall into two main clusters, a larger one containing speakers 
g01... g56 and a smaller one containing speakers n57... n63. The g01... g56 cluster itself has
a subcluster structure, for which the foregoing analyses have revealed two alternatives. All 
the projection and nonhierarchical partition results as well as all the hierarchical results apart
from Average Linkage based on geodesic distance agree that there are two main 
subclusters, but that these do not include all the speakers: 

• The Single Linkage tree and Dbscan partition a minority of the data points into two 
clusters and regard the rest of the data as noise. 

• The Euclidean distance based Complete, Average, and Ward Linkage trees group a 
small number of speakers separately from the two main clusters in slightly different 
ways; these speakers are observable at the periphery of the main data cloud in the 
projection plots or as outliers to it, and correspond substantially to the smallest of the 
clusters in the k-means result for k = 3. 

• The geodesic distance based Complete and Ward Linkage trees are partially 
compatible with (2) in partitioning most of the speakers into two main clusters and the
remaining speakers into a small one, but differ from (2) in the constituents of the 
small cluster. 

The other alternative is that offered by the geodesic distance based Average Linkage tree, 
which partitions the data into fairly numerous small clusters and is compatible with none of 
the other analyses, hierarchical or otherwise. 

It remains to consider the second part of the question: Does that variation correlate 
systematically with associated social variables?. To answer it, the cluster results are 
supplemented with social data associated with the speakers in the DECTE corpus. 

The unanimous partition of the 63 speakers into two subclusters g01... g56 and n57... n63 
corresponds to speakers from Gateshead on the south bank of the river Tyne, betokened by 
the ‘g’ prefix, and those from Newcastle on the north bank betokened by the ‘n’ prefix. 
DECTE does not include any social data for the Newcastle speakers, though surviving 
members of the original Tyneside Linguistic Survey team have confirmed that the n57... n63 
speakers were in fact the academics who comprised the team. The Gateshead speakers, on
the other hand, were with a few exceptions working class with the minimum legal level of 
education and in manual skilled and unskilled employment. The primary clustering of the 
DECTE speakers therefore has a clear sociolinguistic interpretation based on educational 
level and employment type. 

For the Gateshead subcluster the two alternatives identified above are available for 
interpretation. Since the aim here is methodological, that is, to exemplify the application of 
cluster analysis to hypothesis generation, only the first of them is addressed, though clearly 
the second would also have to be considered if the aim were an exhaustive investigation of 
the Geordie dialect as represented by DECTE . For clarity of presentation, the hierarchical 
result with the best cophenetic index, the Average Linkage tree based on Euclidean 
distance, is used as the basis for discussion.



Initially the full range of social variables provided by DECTE was correlated with the Average
Linkage tree, and variables with no discernible systematic correlation with the tree structure 
were eliminated, The surviving variables are shown in Figure 5.21. 

Figure 5.21: Euclidean distance based Average Linkage tree with DECTE social data 

Note that the value ‘Higher’ in the Education column does not necessarily or even usually 
mean university-level education, but simply a level higher than the legal minimum, 
designated ‘Min’, at the time when the TLS project worked. 

The two main clusters, labelled C and D in Figure 5.21, show a gender split, with D 
predominantly male and C predominantly female, and both consisting almost exclusively of 
speakers with minimal education and in manual employment. B contains a mix of male and 
female speakers, but these have higher-than-minimal education and, in a few cases, non-
manual employment. A, finally, consists of two small composite and two singleton clusters 
containing male and female speakers with a mix of educational and employment levels; all 
but g29 and g45 in the small grouping are either outliers to or lie at the periphery of the two 
main clusters in the projection plots and are treated as noise by Dbscan, and this together 



with their separation from the two main clusters in Figure 5.21 indicates that these speakers 
are anomalous relative to the others in the sample in some way, and require separate 
investigation. 

The second part of the research question can now also be answered affirmatively on the 
above evidence. The primary distinction in phonetic usage in DECTE separates a small 
group of highly-educated, middle-class Newcastle professionals from a much larger 
Gateshead group whose members were predominantly speakers in manual employment and
with a minimal or sometimes slightly higher level of education. The indication is that the 
primary differentiating factor among the Gateshead speakers is gender, though the existence
of cluster B suggests that educational level and type of employment are also factors. 

The hypothesis developed thus far can be augmented by identification of the phonetic 
segments which are chiefly responsible for differentiating the DECTE speakers into clusters. 
This is done using cluster centroids, as introduced in Chapter 2. The centroid of any given 
cluster represents the average usage of its constituent speakers; variable-by-variable 
comparison of any two centroids reveals the degree to which the clusters differ, on average, 
for every variable, and allows those with the largest differences to be identified. Centroids for
successive pairs of clusters were calculated and compared using bar plots to represent the 
comparisons graphically. Figure 5.22 shows the comparison for the 12 largest differences 
between the centroids of the Newcastle and Gateshead clusters, with the white bars 
representing Newcastle and the grey bars Gateshead; the choice of a dozen is arbitrary, and
the selection could of course be increased or decreased in size according to need. The 
differences are arranged in descending order of magnitude from the left, and, for each, the 
symbolic representation of the phonetic segment in question and a lexical example are 
given, together with the corresponding DECTE phonetic code to facilitate comparison with 
the transcriptions in the DECTE corpus. 



Figure 5.22: Comparison of centroids for Newcastle and Gateshead clusters 

The phonetic segments primarily responsible for differentiating the Newcastle and 
Gateshead speakers can be read from the plot, with the most important on the left and 
decreasing in importance as one moves to the right. The primary phonetic determinants of 
subclusters can be found in the same way to whatever tree depth one finds useful. Figure 
5.23, for example, compares the centroids for the two main Gateshead clusters, with the 
white bars representing the predominantly female cluster and the grey bars the 
predominantly male one. 

Figure 5.23: Comparison of centroids for the two main Gateshead clusters 

Based on the foregoing analysis and interpretation of the DECTE sample, the following 
hypothesis about the Tyneside speech community from which the sample was taken can be 
stated: 

There is systematic phonetic variation in the Tyneside speech community, and this 
variation correlates in a sociolinguistically significant way with educational level, 
employment type, and gender. The phonetic segments shown in Figures 5.22 and 
5.23 account of most of the variation, and their distribution across social factors is 
shown in Figure 5.21. 

As already noted, a full rather than the present expository study of DECTE would have to go 
into greater detail, investigating such matters as the variation in the cluster structuring and 
allocation of speakers to clusters found in the foregoing discussion, the possible relevance of
additional social factors, and centroid analysis of additional subcluster differences. The next 
step is to test this hypothesis with respect to data drawn from speakers not included in 
DECTE . 



In principle, this discussion of hypothesis generation based on cluster analysis of DECTE 
should stop here, but it happens that existing work on the phonetics of Tyneside English 
provides results based on samples apart from the TLS component of DECTE (Moisl and 
Maguire 2008), and these results confirm the usefulness of cluster analysis as a tool for 
hypothesis generation. This work relates in part to the segments [ɔ:] (DECTE 0118), [ɑ:] 
(DECTE 0122), and [ǝu] (DECTE 0116), which are included by Wells (1982) in the GOAT 
lexical set. These are briefly discussed in terms of how well they support the results in 
Figures 5.22 and 5.23. 

Variation in the GOAT vowel is a prominent feature of Tyneside English. Basing their results 
on the somewhat more recent PVC component of DECTE , Watt and Milroy (1999) identified
four chief variants of the GOAT vowel in the corpus, three of which are included in the 
foregoing centroid comparisons: 

• PVC [o:] / DECTE [ɔ:] is the unmarked variant preferred by all speakers apart from 
working-class males in the PVC corpus. 

• PVC [ɵ:] / DECTE [ɑ:] is the almost exclusive preserve of working class males, and is
described by Watt and Allen (2003) as ‘archaic’ and characteristic of ‘older speakers’ 
in the PVC sample. 

• PVC [Ʊǝ] / DECTE [ǝu] is almost completely restricted to the speech of middle-class 
females, old and young, and of young middle-class males. This variant is described 
as characteristic of ‘high prestige supra-local speech patterns’ (Watt and Milroy 1999:
37f.). 

All of these are consistent with the relevant column pairs in Figures 5.22 and 5.23: PVC [Ʊǝ]
/ DECTE [ǝu] is used mainly by the middle class academic Newcastle speakers, PVC [o:] / 
DECTE [ɔ:] is used by the predominantly female cluster C in Figure 5.21, and PVC [ɵ:] / 
DECTE [ɑ:] by the predominantly male cluster D. 

These confirmations indicate that cluster analysis has generated an empirically supportable 
hypothesis in the present case, and suggest that it can do so both for other phonetic 
segments in DECTE and in corpus linguistic applications more generally. 



6 Literature Review 

This chapter reviews the use of cluster analysis in corpus linguistics to date. 

6.1 Scope 

(Larsen and Ins 2010) have investigated the growth rate of worldwide science publication 
from 1907 to 2007 based on information derived from databases such as the Science 
Citation Index and on existing growth data recorded in the relevant research literature. Their 
conclusion was that “old, well established disciplines like mathematics and physics have had
slower growth rates than the new disciplines including computer science and engineering 
sciences, but that the overall growth rate for science still has been at least 4.7 percent per 
year”. This corresponds to an approximate doubling in the number of publications every 15 
years; there are almost twice as many publications this year than there were in 2000. In the 
same year a group of five professors of English, mechanical engineering, medicine, 
management, and geography respectively published a Commentary entitled We must stop 
the avalanche of low-quality research (Bauerlein et al. 2010) in the Chronicle of Higher 
Education, a respected Washington D.C.-based news service publication for the U.S. 
academic community. It argued that the ‘astounding growth’ of academic publication in 
recent years threatens the integrity of academic endeavour as a whole both because it has 
generated increasing amounts of poorquality and/or unnecessary published output and 
because the sheer volume of publication renders the normal research procedures of reading,
assimilating, and peer reviewing the discipline-specific literature increasingly unworkable. 
What proportion of the research output is of poor quality and/or unnecessary is open to 
debate, but the perception of the crushing effect of volume strikes a chord: conscientious 
attempts to bring the relevant literature to bear on any given research topic usually open up 
seemingly unending vistas of recently-published books, articles, chapters, and conference 
proceedings. 

As such, the following review sets a tractable limit on the literature it surveys, and that limit is
the literature specific to corpus linguistics. The Introduction defined corpus linguistics for the 
purposes of the present discussion as a methodology in the service of the science of 
language. This implicitly excludes a range of language technologies such as information 
retrieval, document classification , data mining, and speech processing, as well as areas of 
artificial intelligence like natural language generation / understanding and machine learning. 
These technologies work with natural language text and speech and thereby have much in 
common methodologically with corpus linguistics, including application to cluster analysis to 
text corpora; indeed, many of the concepts and techniques presented in the foregoing 
chapters come from their literatures. Their aims are, however, not language science but 
language engineering, and they therefore fall outside the self-imposed remit of this review. 
Also excluded on these grounds are quantitative stylometry and author attribution, whose 
aims are literary rather than linguistic. 

The review is in two main parts: the first part outlines work on quantitative methods in corpus
linguistics to serve as a context for the second, which deals with the cluster analytic work 
specifically. 

6.2 Context 



The hypothesis generation methodology described in the foregoing chapters is intended as a
contribution to corpus linguistics, whose remit the Introduction described as development of 
methodologies for creating collections of natural language speech and text, abstracting data 
from them, and analysing those data with the aim of generating or testing hypotheses about 
the structure of language and its use in the world. This is a not-uncontroversial position. The 
literature draws a distinction between corpus-driven and corpusbased linguistics, where the 
former is taken to be a scientific paradigm in the sense that behaviourist and generative 
linguistics are paradigms, that is, ontologies in terms of which linguistic theories can be 
stated, and the latter to be a methodology, that is, a collection of techniques for the 
formulation and testing of hypotheses within some already-existing paradigm. The present 
discussion does not engage with this debate, and simply adopts the corpus-based view of 
corpus linguistics; for recent discussions see Taylor (2008), Gries (2009c, 2011a, 2012), 
McEnery and Hardie (2012) and the papers in volume 15(3) of the International Journal of 
Corpus Linguistics for 2010. For the development and current state of corpus linguistics see 
Stubbs (1996), McEnery and Wilson (1996), Biber, Conrad, and Reppen (1998), Kennedy 
(1998), McEnery and Wilson (2001), Meyer (2002), Sampson and McCarthy (2004), 
Facchinetti (2007), Johansson (2008), Lüdeling and Kytö (2008, 2009), O’Keefe, and 
McCarthy (2010), McEnery and Hardie (2012). 

Despite its relatively well-developed state, corpus linguistic methodology has historically 
been unevenly distributed across the linguistics research community as a whole. This is 
especially the case for application of quantitative methods: simple quantifications such as 
frequencies, means, and percentages together with uni- and bivariate graphs are fairly 
extensively represented in the literature, but application of anything more complex than that 
is much rarer. 

In grammatical linguistics, here understood as the study of the architecture of human 
language, statistical analysis of data derived from empirical observation was part of the 
standard methodology in the heyday of behaviourism in the first half of the twentieth century.
Linguists at this time studied ways of inferring grammatical structure from linguistic 
performance using distributional information extracted from natural language corpora. A 
major figure in this approach to linguistics was Zellig Harris, who in a series of publications – 
for example Harris (1954, 1962, 1968) – brought mathematical concepts from areas like 
linear algebra and information theory to bear on the study of data abstracted from corpora. 
For a review of his legacy see Nevin (2002) and Nevin and Johnson (2002); other examples 
are Miller and Nicely (1955) and Stolz (1965). The demise of behaviourism and the rise of 
generative linguistics in the mid-1950s ushered in a research paradigm which relied and 
continues to rely on native speaker grammaticality judgment rather than on corpus-derived 
data as the empirical basis for hypothesis testing – cf. Gilquin and Gries (2009), Gries 
(2010b). This methodological commitment to native speaker judgment is reflected in the 
paucity of reference to corpora and to quantitative analysis of corpus-derived data in the 
generative linguistics literature. That literature is very extensive, and no claim to have 
searched it comprehensively is made here. Recent textbooks, handbooks together with the 
contents of a few of the main generative linguistics journals were reviewed, however, and the
snapshot of the current research culture which these provided made it abundantly clear that 
corpus-based methodology in general and quantitative methods specifically are not a 
prominent part of it. One might conclude from this that corpus-based methodology has no 



obvious role in the present and future study of the architecture of human language. That 
conclusion would, however, be mistaken. 

The eclipse of corpus-based methodology is characteristic of linguistics as practised in the 
United States and Britain. In continental Europe the application of mathematical and 
statistical concepts and methods to analysis of corpus data for derivation of linguistic laws 
has continued to be developed. An  exhaustive listing of the relevant earlier European 
literature, most of which is not in English and therefore little known in the English-speaking 
linguistics world, is given in Köhler (1995). More recently, this European paradigm in 
linguistics has been championed by the International Quantitative Linguistics Association via 
its journal, the Journal of Quantitative Linguistics, and the monograph series Quantitative 
Linguistics, to which the present monograph belongs. Examples of recent work in this 
paradigm are Baayen (2001, 2008), Köhler (2005), Köhler, Altmann, and Piotrowski (2005), 
Best (2006), Grzybek and Köhler (2007), Kornai (2008), Köhler (2011, 2012), Köhler and 
Altmann (2011). 

Quantitative methods have, moreover, always been central in some linguistics subfields 
concerned with the architecture of language: quantitative analysis of empirical and, 
increasingly, corpus-derived data is fundamental in psycholinguistics – cf. Gilquin and Gries 
(2009), McEnery and Hardie (2012: Chs. 3–6) –, and phonetics has a long tradition of 
quantifying empirical observations of pronunciation and then using statistical techniques like 
hypothesis testing, regression and factor extraction methods like PCA in analyzing the data 
(Johnson 2008: Ch. 3). And, finally, cognitive linguistics (Geeraerts and Cuykens 2010) has 
emerged strongly as a competitor paradigm to generative linguistics in recent years, and 
corpus-based methods are increasingly being proposed as a methodology well suited to it – 
cf. Gries (2003, 2012) and Gries and Stefanowitsch (2006), Stefanowitsch (2010), Arppe et 
al. (2010), McEnery and Hardie (2012: Chs. 6–8). 

Variationist linguistics, here understood as the study of how language use varies in 
chronological, social, and geographical domains, is fundamentally empirical in that it uses 
data abstracted from observation of language use either to infer hypotheses about patterns 
of linguistic variation in or to test hypotheses about a language community. These three 
domains have historically been the preserves of historical linguistics, sociolinguistics, and 
dialectology respectively, though there is substantial overlap among them. Because they are 
based on analysis of data abstracted from language use, all three are naturally suited to 
quantitative and more specifically statistical methods, and, as corpus linguistics has 
developed in recent years, the corresponding research communities have increasingly 
adopted it, albeit unevenly. This unevenness is particularly evident with respect to 
quantitative methods, as sampling of the recent literatures in a way analogous to that for 
grammatical linguistics above testifies. 

• Social variation research has a long-established quantitative tradition (Bayley 2013): 
Labov’s studies of the social motivation for sound change (Labov 1963, 1966), 
Ladefoged, Glick, and Criper’s (1971) study of language in Uganda, Fasold’s (1972) 
study of Black American English, and Trudgill’s (1974) study of social differentiation 
of English in Norwich are early examples. In a series of publications in the 1970s 
Sankoff and various collaborators carried out quantitative analyses of Canadian 
language varieties and more specifically of Montreal French; examples are: Sankoff 
and Cedergren (1971, 1976), Sankoff and Lessard (1975), Sankoff, Lessard, and 



Truong (1977), and Sankoff and Rousseau (1974), Cedergren and Sankoff (1974). 
This work generated the VARBRUL software extensively used for regression analysis
in sociolinguistics to the present day Paolillo (2002), Bayley (2013), Tagliamonte 
(2006). Further examples of the use of quantitative methods in social variation 
research are Horvath (1985), Horvath and Sankoff (1987), Girard and Larmouth 
(1988), Sankoff (1988), Kroch (1989), Labov (1994); for recent reviews of the use of 
corpus methodology in sociolinguistics generally and quantitative methods 
specifically see Kretzschmar and Schneider (1996: Ch. 1), Milroy and Gordon (2003: 
Ch. 6), Baker (2010), Kendall and Herk (2011), McEnery and Hardie (2012: Ch. 5). 

• Geographical variation research also has a long-established quantitative tradition. As 
early as 1952, Reed and Spicer (1952) used statistical analysis of covariance to 
analyze data taken from a corpus of Midwest American English. Examples of more 
recent though still relatively early work are proposals of statistical and computational 
methodologies for linguistic geography by Houck (1967), Rubin (1970), and Wood 
(1972), and application of statistical methods to data from Fijian by Schütz and 
Wenker (1966), from Piedmontese by Levine and Crockett (1966) and from Bantu by 
Coupez, Evrard, and Vansina (1975). In 1973 Séguy (1973a,b,c) proposed a 
numerical measure of dialect difference on the basis of which the distribution of a mix
of phonetic, phonological, morphological, morphosyntactic, and lexical variables was 
plotted for numerous geographical locations on maps of the Gascony region of 
France. Séguy called his approach to dialectology ‘dialectometry’, and this has since 
been used as a general term for the quantitative study of geographical variation. 
Séguy’s work inspired further dialectometric research; examples, in roughly 
chronological order,  are: Guiter (1974, 1987), Fossat and Philps (1976), Naumann 
(1976, 1977, 1982), Putschke (1977), Thomas (1977, 1980, 1988), Berdan (1978), 
Goebl (1982, 1983, 1993a,b, 1997, 2005, 2006, 2010), Viereck (1984, 1988), Linn 
and Regal (1985, 1988, 1993), Cichocki (1988, 1989, 2006), Girard and Larmouth 
(1988), Miller (1988), Kretzschmar, Schneider, and Johnson (1989), Guy (1993), 
Johnson (1994), Kretzschmar (1996), Kretzschmar and Schneider (1996), and the 
Groningen Group from 1996; the work of the last-mentioned makes extensive use of 
cluster analysis and is referenced later in this chapter. For snapshots of the current 
state of dialectometry see Händler, Hummel, and Putschke (1989), Nerbonne (2003),
Nerbonne and Kretzschmar (2003, 2006), Gries, Wulff, and Davies (2010), 
Szmrecsanyi (2011), and the special issues of the journal Literary and Linguistic 
Computing vol. 26(4) [2006] and vol. 28(1) [2013]. 

• The use of quantitative methods in chronological variation research has been 
concentrated in linguistic phylogeny, the study of relatedness among languages. This
study has historically been associated primarily with the Indo-European group of 
languages, and was throughout the nineteenth and most of the twentieth centuries 
dominated by the Neogrammarian paradigm. This paradigm assumed that the 
IndoEuropean language interrelationships and, latterly, language interrelationships in 
general could be modelled by acyclic directed graphs, or trees, and used the 
Comparative Method to construct such trees. The Comparative Method has been 
and remains largely non-quantitative; quantitative comparative methods were first 
introduced in the midtwentieth century via lexicostatistics, which involves calculation 
of proportions of cognates among related languages, and glottochronology, which 



posits a constant rate of linguistic change analogous to that of biological genetic 
mutation – cf. Embleton (1986, 2000), Rexová, Frynta, and Zrzavy (2003), McMahon 
and McMahon (2005: Ch. 2), McMahon and Maguire (2011). As early as 1937 
Kroeber and Chrétien (1937) had urged the use of statistical methods for linguistic 
phylogeny, but they were swimming against the non-quantitative Neogrammarian 
tide, and significant adoption of such methods had, here as in other areas of 
linguistics, to wait until the advent of computational IT in the second half of the 
twentieth century made their application feasible. Since then a synthesis of language 
evolution and relatedness, archaeology, population dynamics, and genetics together 
with associated quantitative methods has emerged as cladistic language phylogeny; 
for the principles of phylogeny see Felsenstein (2004), and for its application in 
cladistics Ridley (1986), Renfrew (1987, 1999), Warnow (1997), Sims-Williams 
(1998), Renfrew, McMahon, and Trask (2000), Cavalli-Sforza (2000), Ringe, Warnow,
and Taylor (2002), Gray and Jordan (2000), Holden (2002), McMahon and McMahon 
(2003, 2005), Rexová, Bastin, and Frynta (2006) and Rexová, Frynta, and Zrzavy 
(2003), Nichols and Warnow (2008), McMahon and Maguire (2011). 

The overall impression of the literature review underlying the foregoing summaries is that 
some researchers in some areas of linguistics have made substantial use of quantitative 
methods to analyze empirically-derived data, but that most researchers in most areas have 
not. This is corroborated by various subject specialists. In 1996 Kretzschmar and Schneider 
(1996) wrote that “Labov’s breakthrough study of New York’s Lower East Side (1966) 
secured the central role of quantitative techniques in sociolinguistics and so provided a 
model for dialectologists, but traditional dialectology has been slow to institutionalize the 
benefits of good counting. . . ”; Nichols and Warnow (2008) note that “over the last 10 or 
more years, there has been a tremendous increase in the use of computational techniques. .
. for estimating evolutionary histories of languages. . . it is probably fair to say that much of 
the community of historical linguists has been skeptical of the claims made by these studies, 
and perhaps even dubious of the potential for such approaches to be of use”; Baker (2010) 
notes that “corpus linguistics has made only a relatively small impact on sociolinguistics”; 
Kendall and Herk (2011) observe that while “much work in sociolinguistics is firmly empirical 
and based on the analysis, whether quantitative or qualitative, of data of actual language 
use” derived from corpora, “the uptake for this kind of work appears to be greater among 
researchers coming from corpus linguistic perspectives than among those coming from 
sociolinguistic backgrounds. Sociolinguists have been slower to adopt conventional corpora 
for research. . . ”; Szmrecsanyi (2011) notes that “while corpus-linguistic methodologies have
increasingly found their way into the dialectological toolbox and while more and more dialect 
corpora are coming on-line. . . it is fair to say that the corpus-linguistic community is not 
exactly drowning in research that marries the qualitative-philological jeweller’s-eye 
perspective inherent in the analysis of naturalistic corpus data with the quantitative-
aggregational bird’s-eye perspective that is the hallmark of dialectometrical research”. 

Why should this be so? It is not for a lack of literature describing and applying quantitative 
corpus linguistic methodology. There are: 

• Textbooks, monographs, and tutorial papers: Butler (1985), Woods, Fletcher, and 
Hughes (1986), Davis (1990), Rietveld and Hout (1993), Young and Bloothooft 
(1997), Oakes (1998), Lebart, Salem, and Berry (1998), McMahon and Smith (1998),
Manning and Schütze (1999), Hubey (1999), Reppen, Fitzmaurice, and Biber (2002),



Gries (2003), Kepser and Reis (2005), Rietveld and Hout (2005), Baayen (2008), 
Raisinger (2008), Johnson (2008), Gries (2009a, 2010c), Baroni and Evert (2009), 
Gries and Stefanowitsch (2010), Moisl (2009), Maguire and McMahon (2011). 

• Collections of research papers and conference proceedings: Garside, Leech, and 
Sampson (1987), Sampson and McCarthy (2004), Gries and Stefanowitsch (2006), 
Stefanowitsch and Gries (2006), Baker (2009), Lindquist (2009), Renouf and Kehoe 
(2009), Gries and Stefanowitsch (2010). 

• Numerous quantitatively-oriented articles in the main corpus linguistics and 
quantitative linguistics journals, which are, in no particular order, International Journal
of Corpus Linguistics, ICAME Journal, Corpus Linguistics and Linguistic Theory, 
Journal of Quantitative Linguistics, Corpora, Literary and Linguistic Computing, 
Empirical Language Research, Computer Speech and Language, and Language 
Resources and Evaluation. 

• Well developed quantitatively-oriented research programmes which have been 
available for decades, such as Séguy’s dialectometry and its developments 
mentioned above, and Biber’s MD in pragmatics and register research, on which see 
for example Biber and Finegan (1986), Biber (1992, 1996, 2006, 2009), together with
detailed discussion of the programme in McEnery and Hardie (2012: Ch. 5) and the 
papers in the special issue of the journal Corpora, vol. 8 (2013) on Twenty-five years 
of Biber’s Multidimensional Analysis. 

The Introduction suggested that the reason for the reluctant adoption of quantitative 
methods by the linguistic research community has to do with a long-established and 
persistent arts-science divide. This is not an isolated view. Händler, Hummel, and Putschke 
(1989) thought that the cause in dialectology was the “traditionell geisteswissenschaftliche” 
orientation of the discipline, and in his introduction to English corpus linguistics Meyer (2002)
wrote: 

Because many modern-day corpus linguists have been trained as linguists, not 
statisticians, it is not surprising that they have been reluctant to use statistics in their 
studies. Many corpus linguists come from a tradition that has provided them with 
ample background in linguistic theory and the techniques of linguistic description but 
little experience of statistics. As they begin doing analyses of corpora they find 
themselves practising their linguistic tradition in the realm of numbers, the discipline 
of statistics, which many corpus linguists find foreign and intimidating. As a 
consequence, many corpus linguists have chosen not to do any statistical analysis, 
and work instead with frequency counts. . . 

Rexová, Frynta, and Zrzavy (2003) identified “the barrier between the humanities and the 
sciences” as “the main reason cladistic methodology has not until very recently been 
introduced into comparative linguistics for the evaluation of lexical data”. At least some 
corpus linguists feel that this situation needs to change, particularly with respect to an 
enhanced use of quantitative methods; see for example Gries (2007, 2011a) and McEnery 
and Hardie (2012: Ch. 2). The hope is that corpus-based linguistics and the associated 
quantitative methods will increasingly penetrate mainstream linguistics, and the present book
is offered as a contribution to that. 



6.3 Cluster analysis in corpus linguistics 

Several of the above-cited textbooks and monographs on quantitative methods in linguistics 
include accounts of cluster analysis and its application. The following discussion of specific 
application areas adopts the foregoing categorization of subdisciplines into grammatical and 
variationist linguistics, and the latter into social, geographical, and chronological variation . 

6.3.1 Cluster analysis in grammatical research 

In the aftermath of Chomsky’s critique of empirical approaches to the study of language in 
his 1959 review of Skinner’s Verbal Behaviour Chomsky (1959), interest in distributional 
linguistics research waned, as noted above. Empirical work continued to be done, however, 
and some of it used cluster analysis. Miller (1971) and Kiss (1973) used hierarchical analysis
of word distribution data in text to derive syntactic and semantic lexical categories. Shepard 
(1972) applied multidimensional scaling to analysis of Miller and Nicely’s (1955) English 
consonant phonetic data and found a reduced twodimensional representation of it based on 
nasality and voicing; a similar approach was used by Berdan (1978). Baker and Derwing 
(1982) applied hierarchical cluster analysis to study the acquisition of English plural 
inflections by children. 

It was not until the later 1980s, however, that there was a resurgence of interest in empirical 
and more specifically statistical approaches among linguists as a consequence partly of the 
advent of ‘connectionist’ cognitive science with its emphasis on the empirical learning of 
cognitive functions by artificial neural networks, partly of the success of stochastic methods 
like Hidden Markov Models in the natural language and speech processing communities, 
and partly of the increasing availability of large-scale digital electronic natural language 
corpora from which to extract distributional information reliably, including corpora augmented
with grammatical information such as the Penn Treebank and WordNet. Since ca. 1990 the 
volume of empirical corpus-based linguistic research has increased quite rapidly, as 
sketched above, and with it the use of cluster analysis. Most of the work has concentrated 
on lexis, but there is also some on phonology, syntax, and language acquisition 
(Stefanowitsch and Gries 2009). 

Over the past two decades or so a large amount of work has been done on inference of 
grammatical and semantic lexical categories from text (Korhonen 2010), driven mainly by the
requirements of natural language processing tasks like computational lexicography, parsing, 
word sense disambiguation, and semantic role labelling, as well as by language 
technologies like information extraction, question answering, and machine translation 
systems. This work is based on the intuition that there are restrictions on which words can 
co-occur within some degree of contiguity in natural language strings, and that the 
distribution of words in text can therefore be used to infer grammatical and semantic 
categories and category relatedness for them. This intuition underlies the “distributional 
hypothesis” central to Harris’ work on empirically-based inference of grammatical objects 
Harris (1954, 1962, 1968), according to which “the meaning of entities and the meaning of 
grammatical relations among them is related to the restriction of combinations of these 
entities relative to other entities” Harris (1968), or, in Firth (1957)’s more economical 



formulation, “a word is characterized by the company it keeps”. This intuition also accords 
with psychological evidence that humans judge the similarity of words by the similarity of 
lexical contexts in which they are used; Miller and Charles (1991) hypothesize that “two 
words are semantically similar to the extent that their contextual representations are similar”.
The volume of published work in this area precludes an exhaustive review of individual 
contributions; for overviews see for example Patwardhan, Banerjee, and Pedersen (2006), 
Pedersen (2006, 2010), Peirsman, Geeraerts, and Speelman (2010), Turney and Pantel 
(2010). Instead, a selection of representative selection of work is described and related work
cited. 

Schütze (1992, 1995, 1998) epitomizes earlier work on corpus-based category induction. He
aims “to induce senses from contextual similarity” using a sense discrimination algorithm for 
ambiguous words in which word senses are represented as clusters of similar contexts in a 
multidimensional vector space. Given an ambiguous word type w, the data on which the 
algorithm operates is an m × n matrix M, where m is the number of tokens of w in whatever 
corpus is being used and n is the number of distinct lexical types t which occur in that 
corpus: each row Mi represents a different token wi , each column Mj represents a different 

lexical type tj , and the value at Mi,j is the number of times tj is a close neighbour of wi, 

where close neighbours of wi are lexical types t which co-occur with wi “in a sentence or a 

larger context”. The context vectors Mi are then clustered using a combination of 

expectation-minimization (EM) and hierarchical methods, which results in a set of sense 
clusters; the representation of the sense of any given cluster is the centroid of that cluster. 
The EM method is used because it is guaranteed to converge on a locally optimal clustering 
solution. It is, however, recognized that this does not guarantee a globally optimal solution, 
and that good initial cluster centres need to be selected to avoid local minima. The rows of M
are therefore clustered using the average-link hierarchical method to find acceptable cluster 
centres. Moreover, because the context vectors of M are very high-dimensional and 
therefore typically sparse, singlular value decomposition is used to reduce the dimensionality
of M, and the reduced version of the data is clustered. The validity of the derived clusters for 
word sense discrimination is externally validated using a test set with known word senses. 
The main advantage of this approach to word sense discrimination over others proposed in 
the literature is said to be that, unlike the others, it requires no information additional to the 
corpus text itself. Other examples of earlier work on lexical category induction via clustering 
before are Hindle (1990), Zernik (1991), Brown et al. (1992), Kneser and Ney (1993), 
Hatzivassiloglou and McKeown (1993), Jardino and Adda (1993), Pereira, Tishby, and Lee 
(1993), Tokunaga, Iwayama, and Tanaka (1995), Ueberla (1995), Yang, Lafferty, and Waibel 
(1996), Basili, Pazienza, and Velardi (1996), McMahon and Smith (1996), Ushioda (1996), 
Andreev (1997), Honkela (1997), Hogenhout and Matsumoto (1997), Chen and Chang 
(1998), Li and Abe (1998), Martin, Liermann, and Ney (1998), Rooth et al. (1998, 1999), Lee 
and Pereira (1999). 

Representative examples of more recent work in this area are: 

• Sun and Korhonen (2009) investigate the potential of verb selectional preferences 
acquired from corpus data using cluster analysis for automatic induction of verb 
classes. They introduce a new approach to verb clustering that involves a 
subcategorization frame acquisition system, syntactic-semantic feature sets 
extracted from the data generated by this system, and a variant of spectral clustering 



suitable for highdimensional feature space. Using this approach, they show on two 
well established test sets that automatically acquired verb selectional preferences 
can be highly effective for verb clustering, particularly when used in combination with 
syntactic features. An advantage of this approach is that, like Schütze’s, it does not 
require resources additional to the corpus text itself. 

• Devereux et al. (2009) review and assess work in the computational linguistics and 
psycholinguistics communities on measuring the semantic relatedness between 
words and concepts using the idea that semantically similar or related words occur in
similar textual contexts, and propose a way of using this idea for automatic 
acquisition of feature-based mental representation models from text corpora using 
cluster analysis. Several similarity metrics are considered, all using the WordNet 
ontology for calculating similarity on the grounds that concepts which fall close 
together under specific superordinate classes in WordNet will tend to be highly 
similar. The similarity data is analyzed using agglomerative hierarchical clustering, 
and the quality of the clusters is evaluated relative to the corresponding WordNet 
ontology. 

• Shutova, Sun, and Korhonen (2010) propose a method for automatic metaphor 
identification in unrestricted text. Starting from a small seed set of metaphorical 
expressions, the method uses associations that underlie their production and 
comprehension to generalize over the associations by means of verb and noun 
clustering. The obtained clusters then represent potential source and target concepts
between which metaphorical associations hold. The knowledge of such associations 
is then used to annotate metaphoricity in a large corpus. The motivation for the use 
of clustering is that of the foregoing studies: that the linguistic environment in which a
lexical item occurs can shed light on its meaning. Like Devereux et al. (2009), 
similarity measurement is based on the WordNet ontology, and spectral clustering is 
used. 

• Gries and Stefanowitsch (2010) address the relationship between words and 
grammatical constructions, and more specifically the problem of determining the 
number and nature of semantic classes that are instantiated by a given set of words 
without recourse to prior assumptions or intuitions. They investigate the effectiveness
of cluster analytic techniques for this purpose by determining how well these 
techniques identify on the most prototypical sense(s) of a construction as well as 
subsenses instantiated by coherent semantic classes of words occurring in it. The 
usual data creation approach of abstracting and counting the collocates of target 
words from a corpus within some user-defined span is modified by including only the 
covarying collexemes of target words, that is, words which occur in a well-defined 
slot of the same construction as the target word. Hierarchical cluster analysis is 
applied to the data, and it yields “a relatively coherent classification of verbs into 
semantic groups”, and one superior to a classification based solely on collocate-
counting. The conclusion is that clustering techniques can be a useful step towards 
making the semantic analysis of constructions more objective and more precise. For 
related work see also Gries (2007), Divjak and Gries (2006, 2008, 2009), Berez and 
Gries (2009), Divjak (2010). 



Other recent work on lexical category and meaning induction includes: Walde (2000, 2006), 
Walde and Brew (2002), Brew and Walde (2002), Allegrini, Montemagni, and Pirrelli (2000), 
Andersen (2001), Lin and Pantel (2001), Gildea and Jurafsky (2002), Pantel and Lin (2002), 
Watters (2002), Almuhareb and Poesio (2004), Bekkerman et al. (2003), Linden (2004), 
Gamallo, Agustini, and Lopes (2005), Jickels and Kondrak (2006), Joanis, Stevenson, and 
James (2008), Bergsma, Lin, and Goebel (2008), Gries (2010a), Gries and Otani (2010), 
Hauer and Kondrak (2011), Schütze and Walsh (2011), Sun and Korhonen (2011). For a 
recent review of work on this topic see Korhonen (2010). 

Work in other areas of grammar involving cluster analysis is less extensive, as noted. Croft 
and Poole (2008) proposed multidimensional scaling as a general methodology for inference
of language universals. Waterman (1995) categorized syntactic structures of lexical strings 
using hierarchical clustering applied to Levenshtein distance measurement of the relative 
proximity of strings, and Gamallo, Agustini, and Lopes (2005) use hierarchical clustering to 
identify syntactic and semantic features of nouns, verbs, and adjectives from partially parsed
text corpora. For phonology and morphology see Shepard (1972), Berdan (1978), Baker and
Derwing (1982), Jassem and Lobacz (1995), Müller, Möbius, and Prescher (2000), 
Calderone (2009), Moisl (2012), Li, Zhang, and Wayland (2012). Gries and Stoll (2009) use 
variability-based neighbour clustering , a modified form of hierarchical clustering, to identify 
groups in language acquisition data. 

6.3.2 Cluster analysis in chronological variation research 

As noted, the use of quantitative methods in chronological variation research has been 
concentrated in linguistic phylogeny, and application of cluster analysis in this subfield 
shares that orientation. 

Examples of earlier work are as follows. Black (1976) used multidimensional scaling to 
cluster lexicostatistical data abstracted from Slavic dialects. Beginning in the mid-1980s, 
Embleton and her collaborators Embleton (1986, 1987, 1993, 2000), Embleton, Uritescu, 
and Wheeler (2004, 2013), and Embleton and Wheeler (1997a,b) championed the use of 
multidimensional scaling in historical linguistics in general and for linguistic phylogeny edging
over into dialectology in particular. Cortina-Borja, Stuart-Smith, and Valinas-Coalla (2002) 
and Cortina-Borja and Valinas-Coalla (1989) analyzed phonological, morphological, and 
lexical data using a range of clustering methods – hierarchical , multidimensional scaling, k-
means , Sammon’s mapping, and partitioning around medoids – to classify Uto-Aztecan 
languages. Batagelj, Pisanski, and Kerzic (1992) is a methodological study of how cluster 
analysis can be applied to language classification . Several string similarity metrics, including
Levenshtein distance, are used to measure the proximities of 16 common words in 65 
languages, and these languages are clustered on the basis of these measures using 
hierarchical analysis. Dyen, Kruskal, and Black (1992) is the summation of an extensive 
series of publications on lexicostatistical language classification in general and of Indo-
European language classification in particular beginning with Carroll and Dyen (1962). Work 
by Black (1976), one of Dyen’s collaborators, was noted above, and further references are 
given in Dyen, Kruskal, and Black (1992); lexicostatistical data is used to classify the 
languages “by some method that is systematic and reasonable but is not specified in detail”, 
but in practice this is hierarchical analysis. Kita (1999) proposed a method for automatic 



clustering of languages whereby a probabilistic model was empirically developed for each 
language, distances between languages were computed according to a distance measure 
defined on the language models, and the distances were used to classify the languages 
using hierarchical clustering. 

Since about 2000, language classification has increasingly been associated with cladistic 
language phylogeny, and cluster analysis is one of a variety of quantitative methods used in 
cladistic research. The general focus in this work is not so much achievement of a definitive 
result for some language group, but methodological discussion of data creation and 
clustering issues. McMahon and McMahon (2005), Nichols and Warnow (2008), Johnson 
(2008), Kessler (2008), and Delmestri and Cristianini (2012) provide introductions to and 
reviews of quantitative methods in linguistic phylogeny, including distance measurement and
clustering methods; for a detailed discussion of proximity metrics in linguistic phylogeny see 
Kessler (2005, 2007). Some examples are of recent work in this field are: 

• Holm (2000) uses hierarchical analysis to classify the Indo-European languages on 
the basis of data derived from Pokorny’s etymological dictionary, but was 
methodologically dissatisfied with the result, and Holm (2007) assessed the reliability 
of such clustering with respect to Indo-European phylogeny, with largely negative 
results. Cysouw, Wichmann, and Kamholz (2006) provide a critique of Holm’s 
methodology; McMahon and McMahon (2003) urged greater attention by the 
cladistics community to understanding of how the various tree-building methods, 
including hierarchical clustering, work, and to assessment of their validity relative to 
the data on which they are based. 

• Wichmann and Saunders (2007) look at ways of using databases that document the 
distribution of typological features across the world’s languages to make inferences 
about genealogical relationships with phylogenetic algorithms developed in biology. 
The focus is on methodology not only for enhancement of procedures for identifying 
relationships but also for assessment of the stability of results. One of the proposed 
classification procedures is neighbour-joining, a clustering method introduced by 
Saitou and Nei (1987), which is used on combination with bootstrapping for result 
validation. The discussion includes a review of work in quantitative linguistic 
phylogeny to 2007. 

• Petroni and Serva (2008) base their work on the proposition that languages evolve 
over time in a way similar to the evolution of mitochondrial DNA in complex biological 
organisms, and argue that is possible in principle to verify hypotheses about the 
relationships among languages on this basis. Central to this is the definition of 
distances among pairs of languages by analogy with the genetic distances among 
pairs of organisms. The distance between two languages is defined as the 
Levenshtein distance among words with the same meaning, using language 
vocabulary as the analogue for DNA among organisms. This approach is applied to 
Indo-European and Austronesian language groups, looking at 50 languages in each. 
Two 50 × 50 Levenshtein language distance matrices are derived. These are 
clustered using the average linkage hierarchical method and the stability of the result 
is validated using bootstrapping. The language relationships so obtained are similar 
to those obtained for these groups by glottochronologists, with some important 
differences. 



For further similar work on phylogeny see Kessler and Lehtonen (2006), Downey et al. 
(2008), Johnson (2008: Ch. 6), Blanchard et al. (2011), Mehler, Pustylnikov, and Diewald 
(2011), Abramov and Mehler (2011). 

As diachronic corpora have begun to appear, so have applications of cluster analysis in 
chronological variation research apart from language phylogeny Gries (2011). Gries and 
Hilpert (2008) address a problem in application of standard clustering methods to grouping 
of features in diachronic corpus data: that standard clustering methods are blind to temporal 
sequencing in data in that they cluster all data points in accordance with their relative 
proximities in the data space. The authors propose variability-based neighbour clustering 
(VNC), a modification of standard hierarchical agglomerative clustering which provides takes
account of chronological stages in diachronic corpus data; for VNC see also Hilpert and 
Gries (2009) and Gries and Hilpert (2010). Ji (2010) proclaims itself “the first systematic 
large-scale investigation of the various morpho-syntactic patterns underpinning the evolution
of Chinese lexis”. Occurrence data for recurrent morpho-syntactic patterns are abstracted 
from the Sheffield Corpus of Chinese and analyzed using PCA and hierarchical clustering. 

6.3.3 Cluster analysis in geographical variation research 

Applications of cluster analysis in geographical variation research are associated primarily 
with the universities of Salzburg and Groningen. These are reviewed first, and work by other 
individuals and groups is covered subsequently. 

In a series of articles from 1971 onwards, Goebl developed a dialectometric methodology 
which culminated in three books: Dialektometrie. Prinzipien und Methoden des Einsatzes der
Numerischen Taxonomie im Bereich der Dialektgeographie (Goebl 1982), Dialektometrische 
Studien. Anhand italoromanischer, rätoromanischer und galloromanischer Sprachmaterialien
aus AIS und ALF (Goebl 1984b), and Dialectology (Goebl 1984a). Being in German, the first 
two are not as well known in the English-speaking research community as they ought to be, 
but the third established Goebl as a pioneer in dialectometry. In extensive publications since 
then – for example Goebl (1993a,b, 1997, 2005, 2006, 2010) –, he and his collaborators 
have refined Séguy’s approach to quantitative measurement of dialect distance and 
developed or adapted a range of graphically-oriented methods for interpretation of dialect 
distance data, one of which is hierarchical cluster analysis. This has included work on 
validation of hierarchical clustering results Mucha and Haimerl (2004), Mucha (2006), 
Haimerl and Mucha (2006) and development of the Visual DialectoMetry (VDM) software 
application which covers the steps of the Salzburg dialectometric evaluation procedure: 
management of preclassified atlas data, calculation of matrices, and visualizations using 
different types of maps Haimerl (2006). 

Since the late 1990s Nerbonne and his collaborators have developed a methodology based 
on the dialectometry pioneered by Séguy and Goebl, whose defining characteristics are 
creation of data based on quantification of observed language use and multivariate analysis 
of that data, and which incorporates the most sophisticated application of cluster analysis in 
current linguistic research. To gain an understanding of that methodology a good place to 
begin is with Nerbonne et al. (1996), which sets out its essentials. In that publication the 
domain of interest is the Dutch dialect area. Twenty geographical locations are selected to 
represent the distribution of phonetic usage in that area. The pronunciations of a set of 100 



words in each of the twenty locations were recorded and phonetically transcribed. For each 
pair of locations the transcriptions of the 100 words were compared and the differences 
quantified; the mean quantitative difference across all 100 words was taken to be the dialect 
distance between the locations. The dialect distances between all possible pairs of locations 
were recorded in a 20 × 20 distance matrix , which was hierarchically cluster analyzed to 
identify any regularities in the dialect distance data, and the clustering results were found to 
reconstruct the traditional division of Dutch dialects into Lower Saxon, Frisian, Franconian, 
and Flemish. Subsequent publications have developed aspects of this methodology; for 
convenience, the researchers involved in these publications will be referred to as the 
‘Groningen group’ because Nerbonne is the central figure among them, and he is based at 
the University of Groningen in the Netherlands. A good snapshot of the current state of the 
Groningen group’s methodology is Wieling (2012). 

Quantification of observed language use 

The discussion in the foregoing chapters of this book has been based on quantification of 
observed language use in terms of the vector space model: a set of n variables was defined 
to describe a set of m objects – in the case of DECTE , speakers – in the research domain, 
and the frequency of occurrence of each of the variables in the domain for each of the 
objects or speakers was recorded. This approach to quantification has been used in 
dialectometry by, for example, Hoppenbrouwers and Hoppenbrouwers (1988, 2001) and 
Babitsch and Lebrun (1989), but not by the Groningen group, which instead adopts the 
Levenshtein string edit distance – cf. Levenshtein (1966), Sankoff and Kruskal (1999) –, first 
applied in dialectometry by Kessler (1995). The Levenshtein distance measures the 
difference between two strings s1 and s2, and its value is the minimum number of editing 
operations required to change s1 into s2 or vice versa, where the defined editing operations 
are single-character insertion, deletion, and substitution. In Table 6.1, for example, the 
Levenshtein distance between s1 and s2 is 2, because substitution of p for c and of u for a 

transforms s1 into s2. 

Table 6.1: Edit transformation of s1 into s2 

The advantage of string edit over vector space distance measurement for dialectometry 
stems from a fundamental characteristic of natural language strings: that the occurrence of 
any given linguistic feature at any given level of analysis is not random but is rather 
dependent on its context. Selection of a set of words like the 100 in Nerbonne et al. (1996) 
defines a canonical set of contexts in which the linguistic features of interest occur, and the 
use of Levenshtein distance between and among corresponding words therefore captures 
the contextual distribution of the features in those words across the different geographical 
locations. The vector space model, on the other hand, simply counts features without regard 
to their contexts. 



Given its centrality in the Groningen group’s methodology, the Levenshtein distance is 
described in greater or lesser degrees of detail in many of its publications; see for example 
Nerbonne and Heeringa (1997, 2001, 2007), Nerbonne, Heeringa, and Kleiweg (1999), 
Nerbonne and Hinrichs (2006), and Nerbonne and Kleiweg (2007), Heeringa et al. (2006), 
Wieling (2012). There have also been various developments of the Levenshtein distance 
since its introduction in the mid-1960s, and a selection of these has been adapted for 
dialectometric application; evaluation with respect to other edit distances are found in Prokic,
Wieling, and Nerbonne (2009), Wieling, Margaretha, and Nerbonne (2011, 2012) and 
Wieling, Prokic, and Nerbonne (2009), Nerbonne and Heeringa (2010). 

Multivariate analysis 

Multivariate analysis in dialectometric terms is the simultaneous use of multiple linguistic 
features to infer dialect distributions from data. The Groningen group describes this 
simultaneous use of linguistic features as ‘aggregation’, and contrasts it with the traditional 
dialectological procedure of analyzing the distribution of a single or at most a very few 
features. The reasons for the group’s preference for aggregation-based analysis are made 
explicit in Nerbonne (2006, 2008, 2009, 2010), and are, in essence, that it is both 
scientifically and methodologically superior: on the one hand, inferring dialect distributions 
from the variabilities of numerous linguistic features both allows for more general hypotheses
about these distributions in the population and also endows the hypotheses with greater 
empirical support, and on the other the arbitrariness inherent in selection of individual 
features for analysis is mitigated. 

Cluster analysis is an important class of multivariate method, and has been fundamental to 
the Groningen methodology from the outset; see Nerbonne (2010) for a statement of its role.
The main emphasis have been on hierarchical clustering Nerbonne and Heeringa (2001), 
Nerbonne and Kretzschmar (2003), and Nerbonne et al. (1996), Heeringa and Nerbonne 
(2001), Shackleton (2007), Prokic and Nerbonne (2008) and Prokic, Wieling, and Nerbonne  

(2009), Osenova, Heeringa, and Nerbonne (2009), Houtzagers, Nerbonne, and Prokic 
(2010), Wieling, Nerbonne, and Baayen (2011), Valls, Wieling, and Nerbonne (2013) and 
Valls et al. (2012) and multimensional scaling Heeringa and Nerbonne (2001), Spruit (2006), 
Gooskens (2006), Vriend et al. (2008), Prokic and Nerbonne (2008) and Prokic et al. (2009), 
Spruit, Heeringa, and Nerbonne (2009), Osenova, Heeringa, and Nerbonne (2009), 
Houtzagers, Nerbonne, and Prokic (2010), Valls, Wieling, and Nerbonne (2013) and Valls et 
al. (2012), though principal component analysis Shackleton (2007), neighbour-joining 
clustering Prokic and Nerbonne (2008), kmeans Prokic and Nerbonne (ibid.), and self-
organizing maps Nerbonne and Heeringa (2001) have also been applied. In recent years a 
graph-based clustering method, bipartite spectral clustering , has increasingly been used 
Wieling (2012), Wieling, Margaretha, and Nerbonne (2011, 2012) and Wieling and Nerbonne
(2009, 2010a,b), Montemagni et al. (2013), and there has been an emphasis on stability and
validation of clustering results Nerbonne et al. (2008), Prokic and Nerbonne (2008) and 
Prokic et al. (2009), Osenova, Heeringa, and Nerbonne (2009), Valls, Wieling, and Nerbonne
(2013) and Valls et al. (2012). 

Geographical scope 

The Groningen group’s original application domain was the Dutch dialect area (Nerbonne, 
Heeringa, and Kleiweg 1999), and this has continued to be cultivated (Heeringa and 



Nerbonne 2001; Spruit 2006; Spruit, Heeringa, and Nerbonne 2009; Vriend et al. 2008; 
Wieling 2012; Wieling and Nerbonne 2009, 2010a,b), but its methodology has also been 
extended to Norwegian (Gooskens 2006), American and British English (Shackleton 2007; 
Wieling 2012; Wieling, Shackleton, and Nerbonne 2013), Bulgarian (Houtzagers, Nerbonne, 
and Prokic 2010; Osenova, Heeringa, and Nerbonne 2009; Prokic, Wieling, and Nerbonne 
2009; Prokic et al. 2009), Catalan (Valls, Wieling, and Nerbonne 2013; Valls et al. 2012; 
Wieling 2012), Estonian (Uiboaed et al. 2013), and Tuscan (Montemagni et al. 2013; Wieling
2012). 

Software 

Gabmap is “a web application aimed especially to facilitate explorations in quantitative 
dialectology” Nerbonne et al. (2011), and implements the essence of the Groningen Group’s 
methodology. 

Applications of cluster analysis in dialectometry apart from those referenced so far are cited 
briefly and in roughly chronological order in what follows, and more recent ones are then 
described in greater detail. 

For the period before 2000, the earliest example of the use of cluster analysis for 
geographical variation research appears to be that of Houck (1967), who included factor 
analysis and hierarchical analysis among other quantitative methods as part of the statistical 
methodology he proposed for variationist linguistics. Shaw (1974) derived lexical occurrence 
data from the Survey of English Dialects and found three distinct clusters of East Midlands 
villages using hierarchical cluster analysis. He also proposed but did not implement 
application of multidimensional scaling and principal component analysis to the data. Black 
(1976) introduced multidimensional scaling to variationist research by applying it to dialect 
distance data for Philippine, African, and North American language groups. Embleton (1987, 
1993) developed a methodology for application of multidimensional analysis to 
dialectometry, Embleton and Wheeler (1997a) applied it to Finnish dialect data, Embleton 
and Wheeler (1997b) to English dialect data, and Embleton, Uritescu, and Wheeler (2004, 
2013) to Romanian. Chambers (1997) applied multidimensional scaling to American dialect 
data; this work is also presented in Chambers and Trudgill (1998). Hoppenbrouwers and 
Hoppenbrouwers (1988, 2001) used phonetic feature frequency as the basis for measuring 
dialect distance for Dutch dialect data and applied hierarchical analysis to identification of 
speaker clusters. Cichocki (1988, 1989) applied dual scaling, a variant of multidimensional 
scaling, to cluster Canadian French dialect data, and Labov (1994: 485ff.) used MDS on 
English dialect data. Kessler (1995) grouped dialects according to data taken from various 
Gaelicspeaking regions using Levenshtein distance and hierarchical cluster analysis, and 
Schiltz (1996) used hierarchical clustering for German dialectometry. 

Examples of work since 2000 are: 

• Palander, Opas-Hänninen, and Tweedie (2003) studied the transition zone between 
two Finnish dialect areas. For each speaker, the number of times each of 198 
speakers used each of 10 phonological and morphological variables was recorded 
and expressed as a percentage of the number of times the variable occurred across 
the whole corpus. A covariance matrix was calculated from this data and then 
hierarchically cluster analyzed. 



• Speelman, Grondelaers, and Geeraerts (2003) proposed “profile-based linguistic 
uniformity”, described as “a method designed to compare language varieties on the 
basis of a wide range or potentially heterogeneous linguistic variables”, where “a 
profile for a particular concept or linguistic function in a particular language variety is 
the set of alternative linguistic means used to designate that concept or linguistic 
function in that language variety together with their frequencies (expressed as 
relative frequencies, absolute frequencies or both)”. Distances between pairs 
language varieties are calculated from these frequencies, and the varieties are 
clustered using multidimensional scaling and hierarchical analysis. 

• Hyvönen, Leino, and Salmenkivi (2007) analyzed lexical variation in Finnish dialects 
using principal component analysis, hierarchical cluster analysis, and 
multidimensional scaling. Leino and Hyvönen (2008) empirically compared the 
usefulness of ‘component models’ such as principal component analysis, factor 
analysis, and independent component analysis for identifying structure in the spatial 
distribution of dialect features relative to two Finnish data sets, one phonetic and one 
lexical. 

• Leinonen (2008) extracted two principal components from phonetic data for 1014 
speakers in 91 Swedish dialects, which captured more than 75% of the data 
variance. A two-dimensional plot of these components showed a strong resemblance 
to vowels in a formant plane. 

• Vriend et al. (2008) integrated linguistic, geographic and social distance data to study
the impact the Dutch-German state border has had on the linguistic characteristics of
a sub-area of the Kleverlandish dialect area. Multidimensional scaling was applied to 
a vector space model of the data to extract speaker-clusters. 

• Mukherjee and Gries (2009) investigate verb transitivity across various New 
Englishes using hierarchical clustering to analyze data derived from a range of 
international English corpora. Gries and Mukherjee (2010) applied hierarchical 
clustering to lexical co-occurrence preferences and investigated if and to what 
degree n-grams distinguish between different modes and varieties in the same 
components of the International Corpus of English. 

• Szmrecsanyi (2008) and Szmrecsanyi and Kortmann (2009) used multidimensional 
scaling, hierarchical clustering, and PCA to analyze morphosyntactic variability in 
British English dialects. Szmrecsanyi (2011) is a sketch of methodologies “to tap 
corpora for exploring aggregate linguistic distances between dialects or varieties as a
function of properties of geographic space”. The paper describes the creation of 
distance matrices and visualization techniques for dialectal distributions, including 
cluster maps, relative to the Freiburg Corpus of English Dialects and focussing on 
regional variation in morphosyntax. Szmrecsanyi (2013) is a book-length study of 
grammatical variation in British English dialects using corpus-based dialectometry. It 
gives an overview of the development of dialectometry and includes chapters on 
quantitative data creation, proximity measurement, and multivariate analysis, 
including multidimensional scaling and hierarchical clustering. 



• Grieve, Speelman, and Geeraerts (2011) propose a methodology for analysis of 
regional linguistic variation which “identifies individual and common patterns of 
spatial clustering in a set of linguistic variables measured over a set of locations 
based on a combination of three statistical techniques: spatial autocorrelation, factor 
analysis, and cluster analysis”. The methodology is exemplified using hierarchical 
clustering applied to lexical variation data for 206 American cities. 

• Meschenmoser and Pröll (2012) and Pröll (2013) cluster data from dialect maps 
using the empirical covariance and fuzzy clustering.

6.3.4 Cluster analysis in social variation research 

Several researchers have used cluster analysis for sociolinguistic interpretation of data 
relating to variation in phonetic usage among speakers. In chronological order: 

• Sankoff and Cedergren (1976) used multidimensional scaling to measure the 
dimensionality of sociolinguistic variation in Montreal French. 

• Jones-Sargent (1983) used hierarchical clustering to analyze phonetic data 
abstracted from the Tyneside Linguistic Survey (TLS) and interpreted the result in 
relation to social data associated with the TLS speakers to see if any 
sociolinguistically interesting hypotheses could be derived. This work is the direct 
ancestor of the present book. 

• Horvath (1985) and Horvath and Sankoff (1987) used principal component and 
principal coordinate analysis on vowel variation data taken from samples of 
Australian speech to group speakers on the basis of their linguistic behaviour and to 
determine the major linguistic and social dimensions of variation in the data. 

• Labov (1994: 485ff.) used multidimensional scaling to study lexical diffusion, and 
Labov (2001) studied the role of social factors in language change using PCA. 

• Moisl and Jones (2005) validated clustering of the DECTE data used for 
exemplification in the foregoing chapters by comparing results derived by a linear 
method, hierarchical analysis, and a nonlinear one, the self-organizing map. 

• Moisl, Maguire, and Allen (2006) and Moisl and Maguire (2008) interpreted 
hierarchical analysis of the DECTE data in terms of the social data associated with 
the DECTE speakers to derive sociologically relevant hypotheses. 

•  Moisl (2012) used PCA to map the distribution of phonetic usage across the DECTE 
speakers. 

Another area of sociolinguistics where cluster analysis has been used is in the study of 
linguistic register, that is, how different language varieties are used for particular purposes or
in particular social settings. This is primarily associated with the work of Biber, who in an 
extensive series of publications developed his Multi-Dimensional (MD) approach to linguistic 
register and textual genre variation using factor analysis and hierarchical clustering (for 
example Biber and Finegan (1986), Biber (1992, 1996, 2006, 2009), Biber, Conrad, and 



Reppen (1998); for a recent overview of this work see Baker (2010) and the special issue of 
the journal Corpora, vol. 8 [2013]. Gries, Newman, and Shaoul (2011) explored the use of 
different-length n-grams as a basis for identifying relationships between registers using BNC 
Baby and ICE-GB corpora and hierarchical clustering.

Recent research has seen the development of sociolectometry as a parallel to dialectometry,
which studies lexical variation across language varieties in relation to social factors using 
vector space models based on the distributional hypothesis referred to earlier, and a variety 
of clustering methods such as multidimensional scaling, principal component analysis, 
hierarchical clustering, and clustering by committee (Pantel and Lin 2002); see for example 
Peirsman, Geeraerts, and Speelman (2010), Ruette, Speelman, and Geeraerts (2013), 
Grieve, Speelman, and Geeraerts (2011), Heylen, Speelman, and Geeraerts (2012), Heylen 
and Ruette (2013). 



7. Conclusion 

The foregoing discussion has proposed cluster analysis as a tool for generating linguistic 
hypotheses from natural language corpora. The motivation for doing so was practical: as the 
size and complexity of corpora and of data abstracted from them have grown, so the 
traditional paper-based approach to discerning structure in them has become increasingly 
intractable, and cluster analysis offers a solution. Hypothesis generation based on cluster 
analysis has two further advantages in terms of scientific methodology, however. These are 
objectivity and replicability (Audi 2010; Chalmers 1999; Daston and Galison 2010; Gauch 
2003). 

Objectivity 

The question of whether humans can have objective knowledge of reality has been central in
philosophical metaphysics and epistemology since Antiquity and, in recent centuries, in the 
philosophy of science. The issues are complex, controversy abounds, and the associated 
academic literatures are vast – saying what an objective statement about the world might be 
is anything but straightforward, as Chapter 2 has already noted. The position adopted here is
that objective knowledge is ultimately impossible simply because no observation of the 
natural world and no interpretation of such observation can be independent of the 
constraints which the human cognitive system and the physiological structures which 
implement it impose on these things. On this assumption, objectivity in science becomes a 
matter of attempting to identify sources of subjectivity and to eliminate them as factors in 
formulating our species-specific understanding of nature. An important way of doing this in 
science is to use generic methods grounded in mathematics and statistics, since such 
methods minimize the chance of incorporating subjective assumptions into the analysis, 
whether by accident or design. 

Replicability

Replicability is a foundational principle of scientific method. Given results based on a 
scientific experiment, replicability requires that the data creation and analytical methods 
used to generate those results are sufficiently well specified to allow the experiment to be 
reproduced and for that reproduction to yield results identical to or at least compatible with 
the originals. The obvious benefit is elimination of fraud. There have been and presumably 
always will be occasional cases of scientific fraud, but this is not the main motivation for the 
replicability requirement. The motivation is, rather, avoidance of error: everyone makes 
mistakes, and by precise and comprehensive specification of procedures the researcher 
enables subject colleagues suspicious of the validity of results to check them. 

Cluster analysis and the associated data representation and transformation concepts are 
objective in the above sense in that they are mathematically grounded, and analyses based 
on them are replicable as a consequence in that experimental procedures can be precisely 
and comprehensively specified. In the foregoing search for structure in the DECTE corpus 
the initial selection of phonetic variables was subjective, but the data representation and the 
transformation methods used to refine the selection were generic, as were the clustering 
methods used to analyze the result. The data and clustering methodology was, moreover, 
specified precisely enough for anyone with access to the DECTE corpus to check the results
of the analysis. 



Given the methodological advantages of cluster analysis for hypothesis generation, the hope
is that this book will foster its adoption for that purpose in the corpus linguistics community 



8. Appendix 

This Appendix lists software implementations of the clustering methods presented earlier. 
The coverage is not exhaustive: only software known to the author to be useful either via 
direct experience or online reviews is included. 

8.1 Cluster analysis facilities in general-purpose statistical packages 

Most general-purpose statistics / data analysis packages provide some subset of the 
standard dimensionality reduction and cluster analysis methods: principal component 
analysis, factor analysis, multidimensional scaling, k-means clustering, hierarchical 
clustering, and sometimes others not covered in this book. In addition, they typically provide 
an extensive range of extremely useful data creation and transformation facilities. A selection
of them is listed in alphabetical order below; URLs are given for each and are valid at the 
time of writing. 

8.1.1 Commercial

• GENSTAT: http://www.vsni.co.uk/software/genstat

• MINITAB: http://www.minitab.com/en-US/products/minitab/

• NCSS: http://www.ncss.com/

• SAS: http://www.sas.com/

• SPSS: http://www-01.ibm.com/software/uk/analytics/spss/

• STATA: http://www: stata.com/

• STATGRAPHICS: http://www.statgraphics.com/

• STATISTICA: http://www.statsoft.com/

• SYSTAT: http://www.systat.com/

8.1.2 Freeware

• CHAMELEON STATISTICS: http://www.seventh-sense-software.com/chameleon.htm

• MICROSIRIS: http://www.microsiris.com/

• ORIGINLAB: http://www.originlab.com/

• PAST: http://folk.uio.no/ohammer/past/

• PSPP: http://www.gnu.org/software/pspp/

• TANAGRA: http://eri.univ-lyon2.fr/~rico/tanagra/en/tanagra.html. This is unusual in 
including the self-organizing map in addition to the standard methods.



• WINIDAMS: www.unesco.org/idams/

• WINSTAT: http://www.winstat.com/

8.2 Cluster analysis-specific software

The following software is designed specifically for cluster analysis.

8.2.1 Commercial

• ANTHROPAC: http://www.analytictech.com/anthropac/apacdesc.htm. Principal 
component analysis, factor analysis, hierarchical, multidimensional scaling.

• BMDP: http://www.statistical-solutions-software.com/bmdp-statistical-
software/cluster-analysis/. Hierarchical, k-means.

• CLUSTAN: http://www.clustan.com/. Hierarchical, k-means.

• GELCOMPAR: http://www.applied-maths.com/gelcompar-ii. Principal component 
analysis, hierarchical, multidimensional scaling.

• KCS: http://www.kovcomp.co.uk/mvsp/. Principal component analysis, hierarchical.

• STATISTIXL: http://statistixl.software.informer.com/. Principal component analysis, 
factor analysis, hierarchical.

• VISCOVER: http://www.viscovery.net/. Self-organizing map.

• VISIPOINT: http://www.visipoint.fi/. Self-organizing map, Sammon’s mapping.

8.2.2 Freeware

• CLUSTER 3.0: http://bonsai.hgc.jp/~mdehoon/software/cluster/. Hierarchical, k-
means, self-organizing map, principal component analysis.

• DATABIONIC ESOM: http://databionic-esom.sourceforge.net/. Emergent self-
organizing map, and extension of the SOM described earlier.

• GENESIS: http://genome.tugraz.at/genesisclient/genesisclient-description.shtml. 
Principal component analysis, hierarchical, k-means, self-organizing map.

• MICROARRAYS CLUSTER: http://derisilab.ucsf.edu/microarray/software.html /  
http://rana.lbl.gov/EisenSoftware.htm. Principal component analysis, hierarchical, k-
means, self-organizing map.

• MULTIBASE: http://www.numericaldynamics.com/. Principal component analysis, 
hierarchical.

• OC: http://www.compbio.dundee.ac.uk/Software/OC/oc.html. Hierarchical.



• PERMUTMATRIX: http://www.lirmm.fr/~caraux/PermutMatrix/. Hierarchical.

• SERF CLUSTERS: http://www.bram.org/serf/Clusters.php. Hierarchical.

8.3 Programming languages 

All the foregoing packages are good, most are excellent, and any corpus linguist who is 
seriously interested in applying cluster analysis to his or her research can use them with 
confidence. That corpus linguist should, however, consider learning how to use at least one 
programming language for this purpose. The packages listed above offer a small subset of 
the dimensionality reduction and cluster analysis methods currently available in the research
literature, and users of them are restricted to this subset; developments of and alternatives 
to these methods, such as DBSCAN and the many others that were not even mentioned, 
remain inapplicable. These developments and alternatives have appeared and continue to 
appear for a reason: to refine cluster analytic methodology. In principle, researchers should 
be in a position to use the best methodology available in their field, and programming makes
the current state of clustering methodology accessible to corpus linguists because it renders 
implementation of any current or future clustering method feasible. A similar case for 
programming is made by Gries (2011a). 

There are numerous programming languages, and in principle any of them can be used for 
corpus linguistic applications. In practice, however, two have emerged as the languages of 
choice for quantitative natural language processing generally: Matlab and R. Both are high-
level programming languages in the sense that they provide many of the functions relevant 
to statistical and mathematical computation as language-native primitives and offer a wide 
range of excellent graphics facilities for display of results. For any given algorithm, this 
allows programs to be shorter and less complex than they would be for lower-level, less 
domain-specific languages like, say, Java or C++, and makes the languages themselves 
easier to learn. 

Matlab (http://www.mathworks.co.uk/) is described by its website as “a high-level language 
and interactive environment for numerical computation, visualization, and programming”. It 
provides numerous and extensive libraries of functions specific to different types of 
quantitative computation such as signal and image processing, control system design and 
analysis, and computational finance. One of these libraries is called “Math, Statistics, and 
Optimization”, and it contains a larger range of dimensionality reduction and cluster analysis 
functions than any of the above software packages: principal component analysis, canonical 
correlation, factor analysis, singular value decomposition, multidimensional scaling, 
Sammon’s mapping, hierarchical clustering, k-means, self-organizing map, and Gaussian 
mixture models. This is a useful gain in coverage, but the real advantage of Matlab over the 
packages is twofold. On the one hand, Matlab makes it possible for users to contribute 
application-specific libraries to the collection of language-native ones. Several such 
contributed libraries exist for cluster analysis, and these substantially expand the range of 
available methods. Some examples are: 

• D. Corney: Clustering with Matlab: http://www.dcorney.com/ClusteringMatlab.html



• J. Abonyi: Clustering and Data Analysis Toolbox: 
http://www.mathworks.co.uk/matlabcentral/fileexchange/7473-clustering-and-data-
analysis-toolbox

• Non-linearity and Complexity Research Group, Aston University: 
http://www1.aston.ac.uk/ncrg/

• A. Strehl: Cluster Analysis and Cluster Ensemble Software: 
http://www.ideal.ece.utexas.edu/~strehl/soft.html

• SAGE Research Methods: Cluster Analysis. A Toolbox for Matlab: 
http://srmo.sagepub.com/view/sage-hdbk-quantitative-methods-in- 
psychology/n20.xml

• Matlab Toolbox for Dimensionality Reduction: 
http://homepage.tudelft.nl/19j49/Matlab-Toolbox-for-Dimensionality-Reduction.html

• SOM Toolbox: http://www.cis.hut.fi/projects/somtoolbox/

On the other hand, because the user has access to the program code both for the native 
Matlab and the contributed libraries, functions can be modified according to need in line with 
current research requirements, or, as a last resort, the required functions can be written ab 
initio using the rich collection of already-existing mathematical and statistical ones. Finally, 
there is a plethora of online tutorials and Matlab textbooks ranging from introductory to 
advanced, so accessibility is not a problem. 

R (http://www.r-project.org/) is described by its website as “a free software environment for 
statistical computing and graphics”, and it has the same advantages over the clustering 
software packages as Matlab. R provides an extensive range of dimensionality reduction 
and cluster analysis functions, which are listed at the following websites: 

• Dimensionality reduction: http://cran.r-project.org/web/views/Multivariate.html

• Cluster analysis: http://cran.r-project.org/web/views/Cluster.html

Examples of user-contributed libraries are:

• H. Fritz et al: TCLUST: http://cran.r-
project.org/web/packages/tclust/vignettes/tclust.pdf

• CRAN: http://cran.r-project.org/web/packages/cluster/index.html

• R. Suzuki and H. Shimodaira: PVCLUST: 
http://www.is.titech.ac.jp/~shimo/prog/pvclust/

• V. Gopal et al: BAYESCLUST: 
http://www.stat.ufl.edu/~viknesh/publications/bayesclustPlain.pdf

There are numerous online tutorials for R generally and for cluster analysis using R 
specifically, as well as a range of textbooks. Of particular interest to corpus linguists are: 
Baayen (2008), Gries (2009a,b), and Oksanen (2010). 



In recent years R has been emerging as the preferred language for quantitative natural 
language processing and corpus linguistics, not least because, unlike Matlab, it is available 
online free of charge. 

8.4 Corpus linguistic-specific applications using clustering 

The dialectometric methodology of the Groningen group, described in the foregoing literature
review, has been implemented in Gabmap, described as “a Web application aimed 
especially to facilitate explorations in quantitative dialectology – or dialectometry – by 
enabling researchers in dialectology to conduct computer-supported explorations and 
calculations even if they have relatively little computational xpertise” (Nerbonne et al. 2011). 
As the literature review showed, cluster analysis is an important aspect of that methodology, 
and it is duly included among the Gabmap facilites. The application is available online free of
charge at http://www.gabmap.nl/. 
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