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Abstract 

Where the variables selected for cluster analysis of linguistic data are 
measured on different numerical scales, those whose scales permit relatively 
larger values can have a greater influence on clustering than those whose 
scales restrict them to relatively smaller ones, and this can compromise the 
reliability of the analysis. The first part of this discussion describes the nature 
of that compromise. The second part argues that a widely used method for 
removing disparity of variable scale, Z-standardization, is unsatisfactory for 
cluster analysis because it eliminates differences in variability among 
variables, thereby distorting the intrinsic cluster structure of the 
unstandardized data, and instead proposes a standardization method based 
on variable means which preserves these differences. The proposed mean-
based method is compared to several other alternatives to Z-standardization, 
and is found to be superior to them in cluster analysis applications. 
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Introduction 

The variables selected for a linguistics research project involving cluster 
analysis may require measurement on different scales. In sociolinguistics, for 
example, speakers might be described by a set of variables one of which 
represents the frequency of usage of some phonetic segment, another one 
age, and a third income. Because these variables represent different kinds of 
thing in the world, they are measured in numerical units and ranges 
appropriate to them: phonetic frequency in the integer range, say, 1..1000, 
age in the integer range 20..100, and income in some currency in the real-
valued range, again say, 0..50000.00. Humans understand that one can't 
compare apples and oranges and, faced with different scales, use the variable 
semantics to interpret their values sensibly. But cluster analysis methods don't 
have common sense. Given an m x n data matrix M in which the m rows 
represent the m objects to be clustered, the n columns represent the n 



variables, and the entry at Mij (for i = 1..m, j = 1..n) represents a numerical 
measure of object i in terms of variable j, a clustering method has no idea 
what the values in the matrix mean and calculates the degrees of similarity 
between the row vectors purely on the basis of the relative numerical 
magnitudes of the variable values. As a consequence, variables whose scales 
permit relatively larger magnitudes can have a greater influence on the cluster 
analysis than those whose scales restrict them to relatively smaller ones, and 
this can compromise the reliability of the analysis, as has often been noted 
(for example Romesburg 1984: Ch.7; Kaufman and Rousseeuw 1990: 4-11; 
Gnanadesikan 1997: 102-105; Hair et al. 2006: Ch.8; Kettenring 2006; Tan et 
al. 2006: 64-65; Chu et al. 2009). The first part of this discussion examines 
the nature of this compromise, and the second proposes a resolution; the 
discussion relates to numerical data only, and does not consider categorical 
data. 

 1. The problem 

Table 1 shows variants (a)-(c) of a matrix that describes a dozen speakers in 
terms of three variables and, for each variant, a cluster analysis of the matrix 
rows using squared Euclidean distance and Ward's Method (Everitt et al. 
2001). 

Table 1: Versions of a data matrix with different variable scales and 
corresponding cluster analyses of their row vectors 

a 

  Frequency Age 
(years) 

Income 
(Euros) 

1 100 20 30000 

2 105 21 30250 

3 110 22 30500 

4 115 30 30750 

5 200 31 31000 

6 205 32 31250 

7 210 40 35000 

8 215 41 35250 

9 300 42 35500 

10 305 50 35750 

11 310 51 36000 

12 315 52 36250  

 



b 

  Frequency Age 
(years) 

Income (K 
Euros) 

1 100 20 30.00 

2 105 21 30.25 

3 110 22 30.50 

4 115 30 30.75 

5 200 31 31.00 

6 205 32 31.25 

7 210 40 35.00 

8 215 41 35.25 

9 300 42 35.50 

10 305 50 35.75 

11 310 51 36.00 

12 315 52 36.25  

 

c 

  Frequency Age 
(days) 

Income (K 
Euros) 

1 100 7300 30.00 

2 105 7665 30.25 

3 110 8030 30.50 

4 115 10950 30.75 

5 200 11315 31.00 

6 205 11680 31.25 

7 210 14600 35.00 

8 215 14965 35.25 

9 300 15330 35.50 

10 305 18250 35.75 

11 310 18615 36.00 

12 315 18980 36.25  

 

In Table 1a the first variable represents the frequency of speakers' usage of 
some phonetic segment of interest, the second age in years, and the third 
annual income in Euros. In Table 1b Frequency and Age are as in 1a but 
Income is now expressed as the number of thousands of Euros (K), and Table 
1c both retains the Income scale of 1b and also expresses Age in terms of 
days rather than years. Using the variable semantics, a human interpreter 
would see from direct inspection of the matrices that, regardless of variation in 
scale, the descriptions of the speakers are in fact equivalent and that they fall 
into three phonetic frequency groups, four age groups, and two income 
groups. That same interpreter would expect cluster analysis to use these 
groupings as the basis for a result that is consistent across all three matrices 
and independent of the variation in scaling, but it does not. The trees in Table 
1 differ substantially, and they cluster the speakers according to the relative 
magnitude of values in the matrix columns. In Table 1a the largest values are 
those in the Income column and the corresponding cluster tree divides the 
speakers into two main groups, those with incomes in the range 30000-31250 
and those with incomes in the range 35000-36250; in Table 1b the largest 



values are those in the Frequency column, and the corresponding cluster tree 
classifies the speakers into three main groups (100-115), (200-215), and 
(300-315) by frequency; in Table 1c the Age column is the one with the 
largest values, and, predictably, the speakers are now divided into four main 
groups (7300-8030), (10950-11680), (14600-15330), and (18250-18980) by 
age.  

That the result of cluster analysis should be contingent on the vagaries of 
scale selection is self-evidently unsatisfactory both in the present case and in 
general. Some way of eliminating scale as a factor is required; Section 2 
proposes one.  

2. Proposed solution 

Relative to an m x n matrix M, the solution to the above problem is to 
standardize the variables by transforming the values in the column vectors of 
M in such a way that variation in scale among them is removed; if all the 
variables are measured on the same scale, none can dominate. The textbook 
method for doing this is via standard scores, also known as Z-scores and 
autoscaling (for example Romesburg 1984: 11; Kaufman and Rousseeuw 
1990: 6-11; Everitt 2001: 51; Hair et al. 2006: Ch.8; Kettenring 2006; 
Boslaugh and Watters 2008: 369-370; Chu et al. 2009), which transforms the 
original values in any column vector Mj (for j = 1..n) into ones which say how 
many standard deviations those original values are from the vector mean. In 
what follows, this method is referred to as Z-standardization. Expression 1 
gives the formula for Z-standardizing the i'th value (for i = 1..m) in any given 
column vector Mj. 

)(

))((
)(

j

jij
ij M

MM
Mzscore

σ
µ−

=  1 

 where μ(Mj) is the column vector mean and σ(Mj) its standard deviation. The 
Z-standardization of an arbitrary vector x is shown in Table 2. 

Table 2: Z-standardization of an arbitrary vector x 

 Original x Z-standardized x 

Values 

[1 0 0 1 1 1 1 6 10 19 13 88 90 157 
91 141 199 331]  

[-0.7006 -0.7118 -0.7118 -0.7006 -
0.7006 -0.7006 -0.7006 -0.6449 -
0.6004 -0.5001 -0.5669 0.2686 
0.2909 1.0373 0.3020 0.8591 
1.5052 2.9759] 

Mean 63.89. 0 

Standard 
deviation 

89.76 1 



Plot 

  

Z-standardization transforms any vector into one having a mean of 0 and a 
standard deviation of 1, and, because division by a constant is a linear 
operation, the shape of the distribution of the original values is preserved, as 
is shown by the pre- and post-standardization plots in Table 2. Only the scale 
changes: 0..331 for original x, and -0.7006..2.9759 for transformed x. 

When Z-standardization is applied to each of the column vectors of a matrix, 
any variation in scale across those variables disappears because all the 
variables are now expressed in terms of the number of standard deviations 
from their respective means. Table 3 shows, for example, Z-standardization of 
the data matrices in Table 1. 

Table 3: Comparison of matrices in Table 1 and their Z-standardized versions 

a: Unstandardized matrices from Table 1a b: Corresponding Z-standardized 
matrices 

 
Frequency Age 

(years) 
Income 
(Euros) 

1 100 20 30000 

2 105 21 30250 

3 110 22 30500 

4 115 30 30750 

5 200 31 31000 

6 205 32 31250 

7 210 40 35000 

8 215 41 35250 

9 300 42 35500 

10 305 50 35750 

11 310 51 36000 

12 315 52 36250 

Mean 207.5 36 33125 

Std 
dev 81.84 11.21 2536.20 
 

  Frequency Age 
(years) 

Income 
(Euros) 

1 -1.3135 -1.4273 -1.2322 

2 -1.2524  -1.3381 -1.1336 

3 -1.1913 -1.2489 -1.035 

4 -1.1302 -0.53523 -0.93644 

5 -0.091641  -0.44603 -0.83787 

6 -0.030547 -0.35682 -0.7393 

7 0.030547 0.35682   0.7393 

8 0.091641 0.44603 0.83787 

9 1.1302 0.53523 0.93644 

10 1.1913 1.2489 1.035 

11 1.2524  1.3381 1.1336 

12 1.3135 1.4273   1.2322 

Mean 0 0 0 

Std 
dev 1 1 1 
 

 
Frequency Age 

(years) 
Income (K 

Euros) 

1 100 20 30.00 

2 105 21 30.25 

3 110 22 30.50 

  Frequency Age 
(years) 

Income (K 
Euros) 

1 -1.3135 -1.4273 -1.2322 

2 -1.2524  -1.3381 -1.1336 

3 -1.1913 -1.2489 -1.035 



4 115 30 30.75 

5 200 31 31.00 

6 205 32 31.25 

7 210 40 35.00 

8 215 41 35.25 

9 300 42 35.50 

10 305 50 35.75 

11 310 51 36.00 

12 315 52 36.25 

Mean 207.5 26 33.13 

Std 
dev 81.84 11.21 2.54 
 

4 -1.1302 -0.53523 -0.93644 

5 -0.091641 -0.44603 -0.83787 

6 -0.030547 -0.35682 -0.7393 

7 0.030547 0.35682  0.7393 

8 0.091641 0.44603 0.83787 

9 1.1302 0.53523 0.93644 

10 1.1913 1.2489 1.035 

11 1.2524  1.3381 1.1336 

12 1.3135 1.4273  1.2322 

Mean 0 0 0 

Std 
dev 1 1 1 
 

  Frequency Age 
(days) 

Income (K 
Euros) 

1 100 7300 30.00 

2 105 7665 30.25 

3 110 8030 30.50 

4 115 10950 30.75 

5 200 11315 31.00 

6 205 11680 31.25 

7 210 14600 35.00 

8 215 14965 35.25 

9 300 15330 35.50 

10 305 18250 35.75 

11 310 18615 36.00 

12 315 18980 36.25 

Mean 207.5 13140 33.13 

Std 
dev 81.84 4091.69 2.54 
 

  Frequency Age 
(days) 

Income (K 
Euros) 

1 -1.3135 -1.4273 -1.2322 

2 -1.2524  -1.3381 -1.1336 

3 -1.1913 -1.2489 -1.035 

4 -1.1302 -0.53523 -0.93644 

5 -0.091641  -0.44603 -0.83787 

6 -0.030547 -0.35682 -0.7393 

7 0.030547 0.35682   0.7393 

8 0.091641 0.44603 0.83787 

9 1.1302 0.53523 0.93644 

10 1.1913 1.2489 1.035 

11 1.2524  1.3381 1.1336 

12 1.3135 1.4273   1.2322 

Mean 0 0 0 

Std 
dev 1 1 1 
 

The Z-standardized versions of the matrices in Table 3b are identical despite 
the variations of scale in those of 3a. Cluster analysis of the rows of this 
standardized matrix, moreover, generates a tree, shown in figure 1, that 
differs from any of those in Table 1. It was generated using squared Euclidean 
distance and Ward's method, as before, and this combination is used 
throughout the remainder of the discussion to maintain comparability among 
analyses. 



 

Figure 1: Cluster analysis of matrix rows in Table 3b 

No one variable is dominant by virtue of the magnitudes of its values relative 
to the magnitudes of the others. Instead, all three play an equal part in 
determining the cluster structure, resulting in a symmetrical tree which reflects 
the symmetry of the standardized matrix's row vectors in Table 3b: vectors 1 
and 12 are numerically identical but with opposite signs, as are 2 and 11, 3 
and 10, and so on. 

Variants of Z-standardization based on the mean absolute deviation or the 
median absolute deviation rather than on the standard deviation are often 
used because these are less sensitive to distortion by outliers (Kaufman and 
Rousseeuw 1990: 5-9), but the difference between them and Z-
standardization is not significant for present purposes, and they are not further 
considered here. 

Z-standardization appears, therefore, to be a good general solution to the 
problem of variation in scaling among data variables, and it is in fact widely 
used for that purpose. It is, however, arguable that, for cluster analysis, Z-
standardization should be used with caution or not at all, again as others have 
observed (Romesburg 1984: Ch.7; Milligan and Cooper 1988; Gnanandesikan 
et al. 1995; Kettenring 2006; Chu et al. 2009). The remainder of this section is 
in three parts: the first presents the argument against Z-standardization, the 
second proposes an alternative standardization method, and the third 
assesses the alternative method relative to some others proposed in the 
literature. 

2.1. The argument against Z-standardization 

The argument depends on making a distinction between three properties of a 
variable.  

- The absolute magnitude of values of a variable is the numerical size of its 
values, and can for present purposes be taken as the absolute maximum 
of those values. For Frequency in Table 3a, for example, it is 315 on that 
criterion.  



- The absolute magnitude of variability is the amount of variation in the 
values of a variable expressed in terms of the scale of those values, and is 
measured by the standard deviation. In Table 3a the absolute magnitude 
of variability of the Frequency column is 81.84. 

- The intrinsic variability is the amount of variability in the values of a 
variable expressed independently of the scale of those values. This is 
measured in statistics by the coefficient of variation (see for example 
Boslaugh and Watters 2008: 62), which is defined with respect to a 
variable v as the ratio of v's standard deviation to its mean, as in 
Expression 2. 

v

vvontOfVariatiCoefficien
µ
σ

=)(  2

The intuition gained from direct inspection of the matrices in Table 3a is 
that there is much more variability in the values of the Frequency and Age 
columns than there is for those in the Income column regardless of the 
variation in their absolute magnitudes and absolute magnitudes of 
variability. The coefficient of variation captures this intuition: for Frequency 
it is 0.383, for Age almost as much at 0.311, and for Income much less at 
0.141. Because the coefficient of variation is scale-independent it can be 
used as a general way of comparing the degrees of variability of variables 
measured on different scales. 

Table 4 exemplifies the interrelationship of these three properties. Each row 
(a)-(d) shows a two-dimensional matrix with the standard deviations and 
coefficients of variation of its column vectors together with a cluster analysis 
of the row vectors; the values of v1 are altered in various ways in the (a)-(d) 
sequence, and those of v2 are held constant. 

Table 4: Interrelationship of absolute magnitude, absolute magnitude of 
variability, and intrinsic variability 

 Data matrix Cluster analysis 

a 

  v1 v2 
1 1000 100  
2 1000 100 
3 1000 100 
4 1000 200 
5 1000 200 
6 1000 200 
7 1000 300 
8 1000 300 
9 1000 300 
10 1000 400 
11 1000 400 
12 1000 400 
Standard deviation 0 111.80 
Coefficient of 
variation 0 0.447 
 

 



b 

  v1 v2 
1 10000 100  
2 10000 100 
3 10000 100 
4 10000 200 
5 10000 200 
6 10000 200 
7 10000 300 
8 10000 300 
9 10000 300 
10 10000 400 
11 10000 400 
12 10000 400 
Standard deviation 0 111.80 
Coefficient of 
variation 0 0.447 
 

 

c 

  v1 v2 
1 1000 100  
2 1000 100 
3 1000 100 
4 1000 200 
5 1050 200 
6 1050 200 
7 1050 300 
8 1050 300 
9 1100 300 
10 1100 400 
11 1100 400 
12 1100 400 
Standard deviation 40.82 111.80 
Coefficient of 
variation 0.039 0.447 
 

 

d 

  v1 v2 
1 1000 100  
2 1000 100 
3 1000 100 
4 1000 200 
5 1200 200 
6 1200 200 
7 1200 300 
8 1200 300 
9 1400 300 
10 1400 400 
11 1400 400 
12 1400 400 
Standard deviation 151.84 111.80 
Coefficient of 
variation 0.136 0.447 
 

 



In Table 4a there is no variability in the values of v1, the coefficient of 
variation and standard deviation are commensurately 0, and, even though the 
absolute magnitude of the values in v1 is much greater than that in v2, 
clustering is determined entirely by the variation in the values of v2: there are 
four primary clusters corresponding to the 100-400 value-groups. In Table 4b 
the absolute magnitude of v1 is substantially increased but the increase is 
uniform so that there is still no variability and the standard deviation and 
coefficient of variation remain 0; the cluster analysis is again determined by 
the variability in V2 and is identical to the one in 4a. In Table 4c a relatively 
small amount of variability is introduced into the values of v1, which results in 
nonzero standard deviation and coefficient of variation, though both of these 
are smaller than those of v2; the cluster tree differs from the one in 4a / 4b in 
that the same four primary clusters remain, but the pattern of variability across 
rows 4-6 and 7-9 is now different from that in rows 1-3 and 10-12, and this is 
expressed in the internal structures of the corresponding clusters. Finally, the 
amount of variability in v1 is increased still further in Table 4d, and this is 
reflected in a higher standard deviation and coefficient of variation. For the 
first time, however, the standard deviation of v1 is greater than that of v2, and, 
even though the coefficient of variation is still smaller than v2's, there are now 
three rather than the previous four primary clusters corresponding to the v1 
value groups 1000, 1200, and 1400. It is neither the absolute magnitude nor 
the intrinsic variability of a variable's values that determine clustering, but its 
absolute magnitude of variability: the larger the standard deviation of a 
variable, the greater its effect on clustering. 

How does this relate to the use of Z-standardization of data for cluster 
analysis? It is a general property of every Z-standardized vector, noted above, 
that its standard deviation is 1. Z-standardization of multiple columns of a 
matrix therefore imposes a uniform absolute magnitude of variability on them. 
This is shown in Table 5; the coefficient of variation cannot be shown for the 
Z-standardized variables in 5b because the formula for the coefficient of 
variation involves division by the mean and, for a Z-standardized vector, this 
is always 0. 

Table 5: Unstandardized and Z-standardized versions of a matrix 

 v1 v2 v3 
1 100 20 1000.10 
2 110 21 1000.11 
3 120 22 1000.08 
4 130 40 1000.01 
5 200 41 1000.20 
6 210 42 1000.07 
7 220 60 1000.23 
8 230 61 1000.30 
9 300 62 1000.03 
10 310 80 1000.14 
11 320 81 1000.13 
12 330 82 1000.68 
Standard 
deviation 82.411 22.376 0.171 

Coefficient of 0.383 0.439 0.00017 

 v1 v2 v3 
1 -1.395 -1.385  -0.426 
2 -1.274  -1.341 -0.368 
3 -1.153 -1.296 -0.542 
4 -1.031 0.492 -0.949 
5 -0.182  0.447 0.155 
6 -0.061 0.402 -0.600 
7 0.061 0.402  0.329 
8 0.182 0.447 0.736 
9 1.031 0.492 -0.833 
10 1.153 1.296 -0.194 
11 1.274 1.341 -0.252 
12 1.395 1.385  2.943 
Standard 
deviation 1 1 1 

Coefficient - - - 



variation  of variation  
a: Unstandardized b: Z-standardized 

Because the absolute magnitude of variability determines the degree of a 
variable's effect on clustering, the implication is that all the column vectors in a 
Z-standardized matrix have an equal influence. This obviously eliminates any 
possibility of dominance by variables with relatively high absolute magnitudes 
of variability, but there is a price, and that price might be felt to be too high in 
any given research application. Intuitively, real-world objects can be 
distinguished from one another in proportion to the degree to which they 
differ: identical objects cannot be distinguished, objects that differ moderately 
from one another are moderately easy to distinguish, and so on. Data 
variables used to describe real-world objects to be clustered are therefore 
useful in proportion to the variability in their values: a variable with no 
variability says that the objects are identical with respect to the characteristic it 
describes and can therefore contribute nothing as a clustering criterion, a 
variable with moderate variability says that the corresponding objects are 
moderately distinguishable with respect to the associated characteristic and is 
therefore moderately useful as a clustering criterion, and again so on. 
Variables v1 and v2 in Table 5 have high intrinsic variabilities relative to v3 
and are therefore more useful clustering criteria than v3. In fact, the variability 
of v3 is so small that it could be the result of random observational noise with 
respect to a characteristic that is constant across the objects to be clustered. 
To equate v3 with v1 and v2 in terms of its influence on clustering, as Z-
standardization does, cannot be right. Rescaling data values so that all 
variables have an identical absolute magnitude of variability diminishes the 
distinguishing power of high-variability variables and enhances the power of 
low-variability ones relative to what is warranted by observed reality. In other 
words, Z-standardization can distort the validity of data as an accurate 
description of reality, and this is the reason why it should be used with caution 
or not at all in data preparation for cluster analysis. 

For multivariate data whose variables are measured on different scales, what 
is required is a standardization method that, like Z-standardization, eliminates 
the distorting effect of disparity of variable scale on clustering but, unlike Z-
standardization, also preserves the relativities of size of the pre-
standardization intrinsic variabilities in the post-standardization absolute 
magnitudes of variation, or, in other words, generates standardized variable 
vectors such that the ratios of their absolute magnitudes of variability are 
identical to the ratios of the intrinsic variabilities of the unstandardized ones. In 
this way the standardized variables can influence the clustering in proportion 
to the real-world distinguishability of the objects they describe.  

2.2 An alternative to Z-standardization 

The literature (Milligan and Cooper 1998; Gnanandesikan et al. 1995; Chu et 
al. 2009) contains a variety of alternatives to Z-standardization, but, relative to 
the desiderata just stated, one of them seems the obvious choice: MEAN-
standardization (first proposed by Anderberg 1973). As its name indicates, 



this standardization involves division of the values of a numerical vector v by 
their mean µv, as in Expression 3. 

v
stdMEAN

v
v

µ
=

 
3 

Table 6 shows the application of MEAN-standardization to the column vectors 
of the unstandardized matrix of Table 5a. 

Table 6: MEAN-standardization of the matrix in Table 5a 

 v1 v2 v3 
1 100 20 1000.10
2 110 21 1000.11
3 120 22 1000.08
4 130 40 1000.01
5 200 41 1000.20
6 210 42 1000.07
7 220 60 1000.23
8 230 61 1000.30
9 300 62 1000.03
10 310 80 1000.14
11 320 81 1000.13
12 330 82 1000.68
Standard 
deviation 82.411 22.376 0.171 

Coefficient of 
variation 0.383 0.439 0.00018
 

 v1 v2 v3 
1 0.46512 0.39216 0.99993 
2 0.51163 0.41176 0.99994 
3 0.55814 0.43137 0.99991 
4 0.60465  0.78431 0.99984 
5 0.93023 0.80392 1 
6 0.97674 0.82353 0.9999 
7 1.0233 1.1765 1.0001 
8 1.0698 1.1961 1.0001 
9 1.3953 1.2157 0.99986 
10 1.4419 1.5686 0.99997 
11 1.4884 1.5882 0.99996 
12 1.5349 1.6078 1.0005 
Standard 
deviation 0.383 0.439 0.00018 

Coefficient of 
variation 0.383 0.439 0.00018 
 

a: Unstandardized b: MEAN-standardized 

Note that MEAN-standardization has preserved the coefficients of variation of 
the unstandardized variables. This is because division by a scalar, here the 
column vector mean, is a linear operation that alters the scale while 
preserving the shape of the original value distribution, as shown for the 
general case in Figure 1 and for v1 in the present case in Figure 2. 

 
a: Plot of v1 from Table 6a b: Plot of v1 from Table 6b 

Figure 2: Preservation of distribution shape by linear transformation 



Note also that the standard deviations of v1-v3 in Table 6b are identical to the 
corresponding coefficients of variation. This is because, for any vector v, it is 
always the case that its coefficient of variation is identical to the standard 
deviation of the MEAN-standardized version of v, as shown in Table 7. 

Table 7: Calculation of coefficient of variation and standard deviation of a 
vector v 

Coefficient of variation of v )(
1

)( vStdDevvCoeffVar
vµ

=  

Standard deviation of vMEANstd )
1

()( vStdDevvStdDev
v

MEANstd µ
=  

Table 7 shows that for the coefficient of variation of v the standard deviation is 
calculated first and then multiplied by the inverse of the mean, and for the 
standard deviation of the MEAN-standardized version of v, v is first divided by 
its mean and the standard deviation of the result then calculated. But one of 
the properties of the standard deviation is that, for a vector v and a constant c, 
stddev(cv) = cstddev(v), that is, the two are mathematically equivalent. Since, 
therefore, (i) the coefficient of variation is a scale-independent measure of 
variability, and (ii) the standard deviation of a mean-standardized variable is 
always identical to the coefficient of variation of the unstandardized variable, 
and (iii) the standard deviation of a variable is what measures its absolute 
magnitude of variability, MEAN-standardization fulfils the above-stated 
requirements for a general standardization method: that it eliminate the 
distorting effect of disparity of variable scale on clustering while preserving the 
ratios of the intrinsic variabilities of the unstandardized variables in the ratios 
of the absolute magnitudes of variability of the standardized ones — the 
absolute magnitudes of variability of MEAN-standardized variables are 
identical to the intrinsic variabilities of the unstandardized ones, and hence so 
are the ratios. 

Figure 3 compares the cluster trees for the unstandardized matrix in Table 5a, 
the Z-standardized version in Table 5b, and the MEAN-standardized version 
in Table 6b. 

   
a: Unstandardized b: Z-standardized c: MEAN-standardized 

Figure 3: Cluster analyses of unstandardized, Z-standardized, and MEAN-
standardized versions of the matrix in Table 5a 



Direct inspection of the unstandardized matrix in Table 5a reveals three value-
groups for v1, four groups for v2, and small random variations on a constant 
for v3. The primary clustering in Figure 3a is by v1 because it has the highest 
absolute magnitude of variability and subclustering within the three primary 
clusters is by v2, with the effect of v3 invisible, all as expected. The cluster 
tree for the Z-standardized matrix is much more complex, and any sense of 
the groups observable in v1 and v2  in the unstandardized matrix is lost as the 
clustering algorithm takes account of the numerically much-enhanced random 
variation in v3 generated by Z-standardization; the tree in Figure 3b bears no 
obvious relationship to any reasonable intuition about structure in the 
unstandardized matrix. The tree corresponding to the MEAN-standardized 
version of the matrix, however, captures these intuitions very well: there are 
four primary clusters corresponding to the four numerical groups in v2 of 
Table 6b, which has the highest intrinsic variability and therefore represents 
the characteristic that most strongly distinguishes objects 1-12 from one 
another in the real world; the effect of v2, the variable with the next-highest 
intrinsic variability, is seen in the internal structures of the primary clusters, so 
that, for example, the flat subtree for objects 1-3 corresponds to very similar 
row vectors in the unstandardized matrix, the segregation of 4 from 5 and 6 in 
the subtree corresponds to the anomalously-low value of 130 in row 4 of the 
unstandardized matrix, and similarly for the remaining two groups 7-9 and 10-
12; the influence of v3, with its very low intrinsic variability, is invisible. 

Returning now to the matrix of Table 1a with which the discussion began, how 
do MEAN and Z-standardization of it compare with respect to cluster 
analysis? An answer requires a basis for comparison. The basis used here is 
how well analyses of the respective standardized matrices capture the 
intuition gained from direct examination of the unstandardized data. The 
values in Table 1a were selected so that a specific speaker structure could 
readily be observed by inspection, and one consequently knows what to 
expect from cluster analysis:  younger, less-well-off speakers use the phonetic 
feature of interest less frequently than older, better-off ones. Though the 
matrix is much smaller than the data one would want to analyze in actual 
sociolinguistic research or in corpus-based linguistic research more generally, 
the variable values it contains reflect those one might expect in data 
abstracted from the real world, and as such cluster analysis of standardized 
versions of it gives a good idea of how effective these standardizations would 
be in practice. Table 8 juxtaposes the cluster trees for the unstandardized, Z-
standardized, and MEAN-standardized versions of the matrix in Table 1a. 

Table 8: Cluster analyses of (a) unstandardized, (b) Z-standardized, and (c) 
MEAN-standardized versions of the matrix in Table 1a



 

a 

  Frequency Age 
(years) 

Income 
(Euros) 

1 100 20 30000 

2 105 21 30250 

3 110 22 30500 

4 115 30 30750 

5 200 31 31000 

6 205 32 31250 

7 210 40 35000 

8 215 41 35250 

9 300 42 35500 

10 305 50 35750 

11 310 51 36000 

12 315 52 36250 

Standard 
deviation 81.84 11.21 2536.20 

Coefficient 
of variation 0.394 0.311 0.077 
 

 

b 

  Frequency Age 
(years) 

Income 
(Euros) 

1 -1.3135 -1.4273 -1.2322 

2 -1.2524  -1.3381 -1.1336 

3 -1.1913 -1.2489 -1.035 

4 -1.1302 -0.5352 -0.9364 

5 -0.0916 -0.4460 -0.8379 

6 -0.0305 -0.3568 -0.7393 

7 0.0305 0.35682  0.7393 

8 0.0916 0.44603 0.8379 

9 1.1302 0.53523 0.9364 

10 1.1913 1.2489 1.0350 

11 1.2524  1.3381 1.1336 

12 1.3135 1.4273  1.2322 

Standard 
deviation 1 1 1 

Coefficient 
of variation - - - 
 



c 

  Frequency Age 
(years) 

Income 
(Euros) 

1 0.4819  0.5556 0.9057 

2 0.5060  0.5833 0.9132 

3 0.5301 0.6111 0.9208 

4 0.5542 0.8333 0.9283 

5 0.9638 0.8611 0.9359 

6 0.9879 0.8889 0.9434 

7 1.0120 1.1111 1.0566 

8 1.0361 1.1389 1.0642 

9 1.4458 1.1667 1.0717 

10 1.4699 1.3889 1.0792 

11 1.4940 1.4167 1.0868 

12 1.5181 1.4444 1.0943 

Standard 
deviation 0.394 0.311 0.077 

Coefficient 
of variation 0.394 0.311 0.077 
 

 

The cluster tree based on the unstandardized matrix accords poorly with 
intuition. It says that the speakers fall into two main clusters, and that, within 
these clusters, there is very little variation among them. 

The tree based on the Z-standardized data accords well with intuition. It says 
(i) that the speakers fall into two main clusters, where cluster 1 consists of 
younger, less well paid ones who use the phonetic feature in question 
relatively infrequently and cluster 2 of older, better paid ones who use it more 
frequently, (ii) that the speakers in cluster 1 are subclustered such that 1a 
consists of the youngest, least well paid ones who use the segment least 
frequently and 1b of those who are somewhat older, somewhat better paid, 
and somewhat more frequent users, and (iii) that the speakers in cluster 2 
subcluster in a way analogous to those of 1.  

The tree based on the MEAN-standardized data also accords well with 
intuition. Like the preceding one, it divides the speakers into two main clusters 
where, as with the Z-standardized analysis, cluster 1 consists of younger, less 
well paid speakers who use the phonetic feature in question relatively 
infrequently and cluster 2 of older, better paid speakers who use it more 
frequently, but it allocates them differently so that cluster 2 contains only the 
oldest, best paid, most frequent users, and cluster 1 the remainder. Cluster 1, 
moreover, contains two quite strongly defined and differently-structured 
subclusters: 1a consists of the youngest, least well paid speakers, and 2 of 
somewhat older, somewhat better paid, somewhat more frequent ones. 

The first of these analyses is an artefact of variable scale selection, as we 
have seen, and can be dismissed. Given that the other two both give 
intuitively plausible results, however, which one should be preferred? The 
answer is implicit in what was said earlier about the relationship between a 
variable and the aspect of reality it describes — essentially that, if it is to be a 



good representation of reality, its variability must reflect variation in the real 
world. Z-standardization imposes a uniform absolute magnitude of variability 
on all variables, whereas MEAN-standardization preserves their intrinsic 
variability ratios in those of their absolute magnitudes of variability. In the 
present case, Z-standardization has diminished the absolute magnitude of 
variability of the Frequency and Age variables and enhanced it for the Income 
variable, and, because it was identical across all three, cluster analysis 
treated all the variables equally. MEAN-standardization has on the other hand 
retained the three variables' intrinsic variabilities in their absolute magnitudes 
of variability, and the analysis consequently clustered the speakers first by the 
variable with the largest magnitude, Frequency, and then by the variable with 
the second largest magnitude, Age; the effect of Income, with its relatively low 
variability, is invisible. In the present case, therefore, it seems clear that the 
analysis based on MEAN-standardization should be preferred, and, given the 
foregoing discussion, this generalizes. 

It is implicit in the foregoing discussion that, the closer the intrinsic variabilities 
of the variables in a data matrix are to uniformity, the more similar the 
clustering results based on Z-standardization and MEAN-standardization will 
be. This is exemplified in Table 9. The values of the Income variable in Table 
1a were changed so that its intrinsic variability is closer to that of Frequency 
and Age. The matrix was then Z- and MEAN-standardized, and the 
corresponding nearly-identical cluster trees are shown below. 

Table 9: Cluster analyses of matrix in Table 1a with Income given greater 
intrinsic variability 

  Frequency Age 
(years) 

Income 
(Euros) 

1 100 20 30000 

2 105 21 32000 

3 110 22 34000 

4 115 30 36000 

5 200 31 38000 

6 205 32 40000 

7 210 40 60000 

8 215 41 62000 

9 300 42 64000 

10 305 50 66000 

11 310 51 68000 

12 315 52 70000 

Standard 
deviation 81.84 11.21  15383.97 

Coefficient 
of 
variation 

0.394 0.311 0.308 

 

  

Emended Table 1a matrix Clustering based on Z-
standardized matrix 

Clustering based on 
MEAN-standardized 

matrix 



Z-standardization is inadvisable only when there is more or less substantial 
variation in intrinsic variability among variables, in which case MEAN-
standardization should be used. But, since MEAN-standardization is a more 
generally-applicable method, it's difficult to see why one would want to bother 
with Z-standardization at all, assuming the research application requires 
preservation of intrinsic variability. 

2.3 Comparison of mean standardization to other methods 

Most general statistics, data processing, and cluster analysis textbooks say 
something about standardization. Z-standardization is always mentioned and, 
when different methods are cited or proposed, there is typically little 
discussion of the relative merits of the alternatives, though, as noted earlier, 
quite a few express reservations about Z-standardization for the same reason 
as in Section 2.1 above. The relatively few studies that are devoted 
specifically to the issue (Milligan and Cooper 1988; Gnanandesikan et al. 
1995; Chu et al. 2009) are empirical, that is, they assess various methods' 
effectiveness in allowing clustering algorithms to recover clusters known a 
priori to exist in specific data sets. Their conclusions are inconsistent with one 
another and with the results of the present study. Milligan and Cooper 
compared eight methods and concluded that standardization using the range 
of variables works best; Gnanandesikan et al. proposed and favoured one 
that uses estimates of within-cluster and between-cluster variability, though 
also noted that "much more research is needed before one attempts to cull 
out the best approaches";  Chu et al. concluded that, for the data they used, 
"there is no consistent performance benefit that is likely to be obtained from 
the use of any particular standardization method". This section takes a 
principled rather than an empirical approach to comparison of various 
standardization methods. Its criterion is the degree to which the methods 
preserve the pre-standardization intrinsic variabilities of variables in post-
standardization absolute magnitudes of variability. To avoid prolonging the 
discussion overly, only a selection of methods cited in the above three studies 
is considered together with one, cosine normalization, that is extensively used 
in the Information Retrieval literature (for example Singhal et al. 1996). These 
are listed in Table 10. 

Table 10: Standardization methods 

SUM standardization divides the values of v by 
their sum, which rescales the values to the 
interval 0..1 such that their sum in standardized 
v is 1. 

∑ =

=
mi i

std v

v
v

..1  

COSINE standardization divides the values of v 
by the norm or length of v, as a result of which 
the standardized vector is always of length 1. 

v

v
vstd =

 
MAX standardization divides the values of v by 
the largest of the values in v, which rescales all 
the values to the interval 0..1.  



RANGE standardization divides the values of v 
by their range, that is, by the difference between 
the maximum and minimum values in v. ( ))min()max( vv

v
vstd −

=
 

All the methods in Table 10 involve division of a vector by a scalar, that is, a 
linear transformation, and as such all preserve the shape of the 
unstandardized distribution together with its intrinsic variabilitiy, just as MEAN-
standardization does. The degree to which they preserve the ratios of the 
intrinsic variabilities of the unstandardized variables in the ratios of their 
standardized absolute magnitudes of variability differs from method to 
method, however, and is determined by the nature of the divisor in any 
particular case. Table 11 compares the ratios of the intrinsic variabilities of the 
unstandardized variables in Table 1a to the ratios of the absolute magnitudes 
of variability of those variables standardized by the methods in Table 10. The 
methods are arranged in descending order of closeness to the benchmark 
MEAN-standardization which, as already noted, preserves the ratios perfectly. 

Table 11: Ratios of pre- and post-standardization variabilities of the Table 1a 
matrix 

 v1/v2 v1/v3 v2/v3 
Ratios of intrinsic variabilities of unstandardized variables 
in Table 1a 1.27 5.15 4.07 

        
Ratios of absolute magnitudes of variation of standardized 
variables       

MEAN (benchmark) 1.27 5.15 4.07 
SUM 1.27 5.15 4.07 
COSINE 1.23 4.81 3.89 
MAX 1.21 3.71 3.08 
RANGE 1.09 0.94 0.86 

The ratios for SUM are identical to those for MEAN. This is because the 
column vectors of a given matrix M SUM-standardized and MEAN-
standardized are just linear variants of one another via division of the SUM 
version by a constant n or multiplication of the MEAN version by n, where n is 
the number of rows in M. That SUM and MEAN standardizations are 
equivalent self-evidently applies not only in the present case but in general. 

The ratios for COSINE-standardization are close but not identical to those for 
MEAN and SUM. This is a consequence of the nonlinearity that COSINE 
introduces into standardization. To see where this nonlinearity comes from 
and its effect, it is first necessary to understand the general relationship 
between vector variability and vector length. This relationship is examined 
with reference to the list of vectors in Table 12a. These vectors are two-
dimensional for graphical display, but the discussion based on them extends 
straightforwardly to higher dimensions. They all contain values in the range 
0..10, though the choice of range is arbitrary and could have been anything, 
and all have different value distributions within that. The value distributions 
were selected such that they all sum to the range maximum 10, and go from 
one distribution extreme [0 10] to the other [10 0] in constant 0.5 increments; 



these are simplifications for clarity of exposition, and do not affect the 
generality of the discussion to follow. 

Table 12: The relationship between vector variability and vector length 

 Vectors Std dev Coeff 
var 

Length 

1 [0 10] 5 1 10 
2 [0.5 9.5] 4.5 0.9 9.513 
3 [1 9] 4 0.8 9.055 
4 [1.5 8.5] 3.5 0.7 8.631 
5 [2 8] 3 0.6 8.246 
6 [2.5 7.5] 2.5 0.5 7.906 
7 [3 7] 2 0.4 7.106 
8 [3.5 6.5] 1.5 0.3 7.211 
9 [4 6] 1 0.2 7.382 

10 [4.5 5.5] 0.5 0.1 7.616 
11 [5 5] 0 0 7.071 
12 [5.5 4.5] 0.5 0.1 7.106 
13 [6 4] 1 0.2 7.211 
14 [6.5 3.5] 1.5 0.3 7.382 
15 [7 3] 2 0.4 7.616 
16 [7.5 2.5] 2.5 0.5 7.906 
17 [8 2] 3 0.6 8.246 
18 [8.5 1.5] 3.5 0.7 8.631 
19 [9 1] 4 0.8 9.055 
20 [9.5 0.5] 4.5 0.9 9.513 
21 [10 0] 5 1 10  

 Vectors Std dev Coeff 
var 

Length 

1 [0 1] 0.5 1 1 
2 [0.053 0.999] 0.473 0.9 1 
3 [0.110 0.994] 0.442 0.8 1 
4 [0.174 0.985] 0.406 0.7 1 
5 [0.243 0.970] 0.364 0.6 1 
6 [0.316 0.949] 0.316 0.5 1 
7 [0.394 0.919] 0.263 0.4 1 
8 [0.474 0.880] 0.203 0.3 1 
9 [0.555 0.832] 0.139 0.2 1 

10 [0.633 0.774] 0.070 0.1 1 
11 [0.707 0.707] 0 0 1 
12 [0.774 0.633] 0.070 0.1 1 
13 [0.832 0.555] 0.139 0.2 1 
14 [0.880 0.474] 0.203 0.3 1 
15 [0.919 0.394] 0.263 0.4 1 
16 [0.949 0.316] 0.316 0.5 1 
17 [0.970 0.243] 0.364 0.6 1 
18 [0.985 0.174] 0.406 0.7 1 
19 [0.994 0.110] 0.442 0.8 1 
20 [0.999 0.053] 0.473 0.9 1 
21 [1 0] 0.500 1 1  

a: Pre-standardization vectors e: Post-standardization vectors 

  
b: Locations of pre-standardization 

vectors in 2-dimensional space 
f: Locations of post-standardization vectors 

in 2-dimensional space 

 
 



c: Lengths of pre-standardization vectors g: Lengths of post-standardization vectors 

  
d: Standard deviations of pre-

standardization vectors 
h: Standard deviations of post-

standardization vectors 

Table 12b shows the locations of the vectors 1-21 in 12a in two-dimensional 
space together with lines representing the lengths of arbitrarily selected ones. 
The plot shows that the vectors vary in length and that there is a systematic 
relationship between the lengths and the distribution of vector values. This is 
confirmed by reference to the length column in 12a: vector length is at its 
maximum at the distribution extremes, that is, at [0 10] and [10 0], and at its 
minimum for the uniform vector [5 5]. Table 12c is a plot of these vector 
lengths, and it shows that the relationship between value distribution and 
length is nonlinear, with most of the nonlinearity at and near the minimum 
length. Reference to the standard deviations of the vectors in 12a and the 
corresponding plot in 12d allows this to be restated in terms of variability: a 
vector's length is nonlinearly related to its standard deviation, that is, to its 
absolute magnitude of variability.  

The implications of the nonlinear relationship of vector length to absolute 
magnitude of variability are that, when COSINE-standardization is applied to a 
collection of vectors, any differences in the variabilities of the vectors will be 
nonlinearly reflected in their lengths, and, because the lengths are the divisors 
in the COSINE formula, that the post-standardization absolute magnitudes of 
variability will be nonlinearly related to the pre-standardization ones. This is 
exemplified in 12e-12h. Table 12e shows the vectors of 12a COSINE-
standardized together with the corresponding standard deviations, coefficients 
of variation, and lengths. COSINE achieves a uniform vector length of 1, 
shown in the length column of 12e and in 12g, by transforming the values in 
each vector such that it lies on a curve of constant radius 1 in two-dimensional 
space, as in 12f. A consequence of this transformation is that the absolute 
magnitudes of variability of the standardized vectors are nonlinearly related to 
the absolute magnitudes of variability of the unstandardized ones, as can be 
seen by comparing 12d and 12h.  

Recall, moreover, that COSINE standardization preserves intrinsic variability, 
as shown in the coeff var columns of 12a and 12e, and further note that the 
intrinsic variabilities are linear, having the same shape as the standard 
deviations in 12d. Since the absolute magnitudes of variability of the 
standardized vectors are nonlinear and the intrinsic variabilities are linear, the 
post-standardization absolute magnitudes of variability are nonlinearly related 
to the intrinsic variabilities, and it follows that the ratios of the variables' 



intrinsic variabilities are not preserved in the ratios of the absolute magnitudes 
of variability; this failure to preserve the ratios can be demonstrated by 
calculating and comparing a small sample of them from 12e, shown in Table 
13. 

Table 13: Ratios of intrinsic variabilities and post-standardization absolute 
magnitudes of variability for a selection of vectors in figure 12e 

 v1/v2 v1/v3 v1/v4 v1/v5 
Intrinsic 
variabilities 1 / 0.9 = 1.111 1 / 0.8 = 1.250 1 / 0.7 = 1.429 1 / 0.6 = 1.667 

Post-std absolute 
magnitudes of 
variability 

0.5 / 0.473 = 
1.057 

0.5 / 0.442 = 
1.132 

0.5 / 0.406 = 
1.233 

0.5 / 0.364 = 
1.374 

The conclusion must therefore be that, with respect to the collection of vectors 
in 12a, COSINE is inferior to MEAN and SUM on account of the nonlinearity it 
introduces into the standardization procedure. And, since nonlinearity is a 
general property of the relationship between vector variability and length, this 
conclusion can be extended to any collection of vectors with different 
variabilities such as those of the matrix in Table 1a. 

The ratios for MAX in Table 11 are reasonably close but not identical to those 
for MEAN and SUM. The reason for this is easier to see than for COSINE: it is 
unpredictability in the distribution of maxima across the column vectors of the 
matrix being standardized. In general, for real-valued data having any given 
level of intrinsic variability, there is an arbitrary number of different vectors 
which have that variability, and the maxima across those vectors can differ; 
because the maximum is the divisor in the MAX formula, this unpredictability 
affects the post-standardization absolute magnitudes of variability and may 
cause those magnitudes to vary across the column vectors in a way that 
distorts the intrinsic variability ratios to greater or lesser degrees. To exemplify 
this, a collection of vectors with very similar intrinsic variabilities but with 
substantial variation in maxima was generated and MAX standardized. The 
unstandardized vectors are shown in Table 14a, sorted in ascending order of 
intrinsic variability, together with the corresponding intrinsic variabilities, 
maxima, and post-standardization absolute magnitudes of variability. 

Table 14: MAX-standardization of vectors with similar intrinsic variabilities and 
substantially different maxima 

a 

 Vector Intrinsic 
variability 

Max Post-std absolute 
magnitude of variability 

1 [0.51  0.54  0.50  0.44  0.01] 0.4912 0.981 0.2962 
2 [0.07  0.93  0.54  0.95  0.84] 0.4968 0.951 0.3498 
3 [0.98  0.27  0.26  0.58  0.85] 0.5009 0.546 0.3683 
4 [0.31  0.02  0.44  0.46  0.28] 0.5124 0.468 0.3373 
5 [0.96  0.91  0.26  0.65  0.22] 0.5145 0.967 0.3220 
6 [0.93  0.32  0.92  0.21  0.49] 0.5203 0.930 0.3218 
7 [0.43  0.40  0.17  0.39  0.91] 0.5237 0.913 0.2660 
8 [0.09  0.73  0.97  0.71  0.40] 0.5238 0.974 0.3134 
9 [0.30  0.25  0.02  0.21  0.42] 0.5374 0.421 0.3112 
10 [0.46  0.04  0.46  0.74  0.85] 0.5446 0.857 0.3276 



11 [0.65  0.64 0.32  0.11  0.25] 0.5469 0.658 0.3316 
12 [0.65  0.32  0.62  0.70  0.02] 0.5561 0.703 0.3694 
13 [0.13  0.38  0.96  0.71  0.37] 0.5645 0.967 0.3007 
14 [0.93  0.64  0.02  0.70  0.40] 0.5753 0.931 0.3342  

b 

 
From the co-plots of intrinsic variability and post-standardization absolute 
magnitude of variability in 14b, it is readily seen that there is no systematic 
relationship between the two: the intrinsic variability plot increases slowly and 
fairly smoothly whereas the other jumps around without any obvious pattern, 
reflecting the unpredictability of the maxima in the unstandardized vectors. 
The effect of this on the preservation of intrinsic variability ratios for a sample 
of vector pairs in 14a is shown in Table 15. 

Table 15: Ratios of intrinsic variabilities and post-standardization absolute 
magnitudes of variability for a selection of vectors in figure 14a 

 v1/v2 v1/v3 v1/v4 v1/v7 
Intrinsic variabilities 0.989 0.981 0.959 0.938 
Post-standardization absolute magnitudes of 
variability 0.847 0.804 0.878 1.114 

The unpredictability of maxima means that MAX standardization cannot be 
relied on to preserve the intrinsic variability ratios in the post-standardization 
absolute magnitudes of variability consistently, and hence MAX must, like 
COSINE, be regarded as inferior to MEAN and SUM. 

The ratios for RANGE differ greatly from those of the benchmark, and are in 
fact closer to the uniformity characteristic of Z-standardization. The reason for 
this is straightforward: like standard deviation, the divisor in Z-standardization, 
range is a measure of dispersion, though a cruder one, and therefore gives a 
similar result. RANGE is therefore subject to the same criticism as Z, and can 
be rejected as a viable data standardization method for cluster analysis. 

Conclusion 

This discussion has addressed a generally recognized problem in cluster 
analysis: that, where the data variables are measured on different scales, 
variables whose scales permit relatively large values tend to have an effect on 
clustering which is disproportionately large relative to their importance as 



descriptors of the domain of interest, and the effect of those whose scales 
permit only relatively small values disproportionately small relative to their 
importance, making cluster results contingent on the vagaries of scaling 
choice. A widely used solution to that problem, Z-standardization, was found 
to be inadvisable at least under some circumstances because it imposes a 
uniform variability on all the data variables whatever the differences in their 
intrinsic variabilities, thereby distorting their validity as representations of the 
domain of interest and consequently the reliability of cluster analysis based on 
them. An alternative standardization method based on the variable mean was 
proposed and compared to several other methods, and, together with SUM-
standardization, was found to be most effective in preserving intrinsic 
variability. In applications where preservation of the intrinsic variabilities of 
data variables is felt to be important for reliable cluster analysis, therefore, 
MEAN / SUM-standardization should be used. Corpus-based sociolinguistics 
provided one example of such an application in the foregoing discussion, 
though it is not difficult to think of others both within that subdiscipline and in 
corpus-based linguistics more generally. 
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