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1. Introduction

The  proliferation  of  computational  technology  has

generated  an  explosive  production  of  electronically

encoded information  of  all  kinds.  In  the  face of  this,

traditional  paper-based  methods  for  search  and

interpretation of data have been overwhelmed by sheer

volume, and a variety of computational methods have

been  developed  in  an  attempt  to  make  the  deluge

tractable. As such methods have been refined and new

ones introduced, something over and above tractability

has  emerged  --new  and  unexpected  ways  of

understanding the data. The fact that a computer can deal

with vastly larger datasets than a human is an obvious

factor,  but  there  are  two  others  of  at  least  equal

importance.  One is  the  ease  with  which  data  can  be

manipulated and reanalyzed in interesting ways without

the often prohibitive labour that this would involve using

manual techniques, and the other is the extensive scope

for visualization that computer graphics provide.

These developments have clear implications for corpus

linguistics.  On  the  one  hand,  large  electronic  corpora

potentially  exploitable  by  the  linguist  are  being

generated as a by-product of the many kinds of daily IT-

based activity worldwide, and, on the other, more and

more  application-specific  electronic  linguistic  corpora

are being constructed. Effective analysis of such corpora

will  increasingly  be  tractable  only  by  adapting  the

interpretative  methods  developed  by  the  statistical,

computational  linguistics,  information  retrieval,  data



mining, and related communities.

The present  chapter  deals  with  one  type  of  analytical

tool: exploratory multivariate analysis. The discussion is

in  six  main  parts.  The  first  part  is  the  present

introduction,  the  second  explains  what  is  meant  by

exploratory multivariate analysis, the third discusses the

characteristics  of  data  and  the  implications  of  these

characteristics  for  generation  and  interpretation  of

analytical  results,  the fourth  gives  an overview of  the

various  exploratory  analytical  methods  currently

available, the fifth reviews the application of exploratory

multivariate analysis in corpus linguistics, and the sixth

is a select bibliography. The material is presented in an

intuitively accessible way, avoiding formalisms as much

as possible. However, in order to work with multivariate

analytical methods some background in mathematics and

statistics is indispensable. 

2. Exploratory multivariate analysis

Observation  of  nature  plays  a  fundamental  role  in

science. In current scientific method, a hypothesis about

some natural phenomenon is proposed and its adequacy

assessed  using  data  obtained  from observation  of  the

domain  of  inquiry.  But  nature  is  dauntingly  complex,

and there is no practical  or indeed theoretical  hope of

being  able  to  observe  even  a  small  part  of  it

exhaustively.  Instead,  the researcher  selects  particular

aspects  of  the  domain  for  observation.  Each  selected

aspect  is  represented  by  a  variable,  and  a  series  of

observations is conducted in which, at each observation,



the values for each variable are recorded. A body of data

is thereby built up on the basis of which a hypothesis can

be  assessed.  One  might  choose  to  observe  only  one

aspect -the height of individuals in a population, say- in

which case the data  consists of more or less numerous

values assigned to one variable; such data is univariate.

If two values are observed -say height and weight- then

the data is bivariate, if three trivariate, and so on up to

some arbitrary number  n;  any data  where  n is  greater

than 1 is multivariate.

As the number of variables grows, so does the difficulty

of understanding the data, that is, of conceptualizing the

interrelationships of variables within a single data item

on the one hand, and the interrelationships of complete

data  items  on  the  other.  Multivariate  analysis  is  the

computational use of mathematical and statistical tools

for understanding these interrelationships in data.

Numerous  techniques  for  multivariate  analysis  exist.

They can be divided into two main categories which are

often  referred  to  as  'exploratory'  and  'confirmatory'.

Exploratory analysis aims to discover regularities in data

which  can  serve  as  the  basis  for  formulation  of

hypotheses  about  the  domain  of  interest.  Such

techniques  emphasize  intuitively  accessible,  usually

graphical representations of data structure. Confirmatory

multivariate analysis attempts to determine whether or

not  there  are  significant  relationships  between  some

number  of  selected  independent  variables  and  one  or

more  dependent  ones.  These  two  types  are



complementary  in  that  the  first  generates  hypotheses

about data, and the second tries to determine whether or

not such hypotheses are valid. Exploratory analysis is

naturally prior to confirmatory; this chapter focuses on

the former. 

On  multivariate  analysis  in  general,  see  for  example

Everitt / Dunn (2001), Gordon (1999), Grimm / Yarnold

(1995,  2000),  Hair  et  al.  (1998),  Kachigan  (1991),

Tinsley / Brown (2000), Tabachnick / Fidell (2006). 

3. Data

Data is ontologically different from the world. The world

is as it is; data is an interpretation of it for the purpose of

scientific study. The weather is not the meteorologist’s

data –measurements of such things as air temperature

are.  A  text  corpus  is  not  the  linguist’s  data  –

measurements of such things as average sentence length

are. Data is constructed from observation of things in the

world, and the process of construction raises a range of

issues  that  determine  the  amenability  of  the  data  to

analysis and the interpretability of the analytical results.

The importance to exploratory multivariate analysis of

understanding such data issues can hardly be overstated.

On the one hand, 'however powerful the exploring tools,

or  aggressive  the  explorer,  nothing  can  be  discovered

that  is  beyond  the  limits  of  the  data  itself'  (Pyle

(1999:46)). On the other, failure to understand relevant

characteristics  of  data  can  lead  to  results  and

interpretations that are distorted or even worthless. For

these reasons, an account of data issues is given before



moving on to exploratory multivariate methods.

3.1 Variable selection

Given that data is an interpretation of some aspect of the

world, what does such an interpretation look like? It is a

description of the selected aspect in terms of variables. A

variable is a symbol, and as such is a physical entity with

a  conventional  semantics,  where  a  conventional

semantics is understood as one in which the designation

of  a  physical  thing  as  a  symbol  together  with  the

connection between the symbol and what it represents

are determined by agreement within a community. The

symbol ‘A’, for example, represents the phoneme /a/ by

common  assent,  not  because  there  is  any  necessary

connection between it and what it represents. Since each

variable  has  a  conventional  semantics,  the  set  of

variables  chosen  to  describe  a  domain  of  inquiry

constitutes the template in terms of which the domain is

interpreted.  Selection  of  appropriate  variables  is,

therefore, crucial to the success of any data analysis.

Which variables are appropriate in any given case? That

depends on the nature of the research. Data can only be

created in relation to a research question that provides an

interpretative  orientation  in  the  domain  of  interest.

Without such an orientation, how does one know what to

observe,  what  is  important,  and  what  is  not?  The

fundamental  principle  in  variable  selection  is  that  the

variables must describe all and only those aspects of the

domain  that  are  relevant  to  the  research  question.  In

general, this is an unattainable ideal. Any domain can be



described  by an  essentially  arbitrary  number  of  finite

sets of variables; selection of one particular set can only

be  done  on  the  basis  of  personal  knowledge  of  the

domain and of the body of scientific theory associated

with it, tempered by personal discretion. In other words,

there is no algorithm for choosing an optimally relevant

set of variables for a research question.

3.2 Data representation

If they are to be analyzed using mathematical methods,

the  selected  variables  need  to  be  mathematically

represented. A widely used way of doing this is vector

space  representation  (Belew  (2000:86-7),  Lebart  /

Rajman (2000), Manning / Schütze (1999:539-44), Pyle

(1999:202-22),  Salton  et  al.  (1975),  Salton  /  McGill

(1983:ch. 4). A vector is a sequence of scalars indexed

by the positive integers 1, 2, ...n,  where a scalar is a

single number:

Figure 1: A vector

A vector space is a geometrical interpretation of a vector

in which

i.  the  dimensionality  of  the  vector,  that  is,  its  index

length  n,  defines  an  n-dimensional  space.  There  are

various possible types of space, but for present purposes

space  is  taken to  be  the  Euclidean  one  familiar  from

elementary geometry, in which the axes are straight lines



at right angles to one another.

ii.  the  sequence  of  scalars  comprising  the  vector

specifies coordinates in the space. These coordinates are

relative to the scales of the axes. 

iii. the vector itself is a point at the specified coordinates

in the space.

For example,  the two components of a vector  v = [36

160]  are  coordinates  of  a  point  in  a  two-dimensional

space, and those of v = [36 160 71] of a point in three-di-

mensional space:

a b

Figure 2: 2 and 3-dimensional vector spaces

A length-4 vector defines a point in 4-dimensional space,

and so on to any dimensionality n. Mathematically there

is no problem with spaces of dimension greater than 3.

The only problem lies in the possibility of visualization

and intuitive understanding. As the number of variables

and thus dimensions  grows beyond 3,  graphical  repre-

sentation and intuitive comprehension of it become im-

possible:  who can  visualize  points  in  a  4-dimensional

space,  not to speak of a 40-dimensional  one? It  often

helps to keep in mind that mathematical dimension has



no necessary connection with the three dimensions of the

physical world.

Data typically consists of more or less numerous data

items each of which is described in terms of the selected

variables.  Where  vector  space  representation  is  used,

each data item is described by a vector, and the data is

consequently a collection of vectors. Such a collection is

conveniently represented as a matrix in which the rows

are the data items and the columns the variables. Thus,

data consisting of m items each of which is described by

n variables is represented by an m x n matrix D in which

Di (for i = 1...m) is the i'th data item, Dj (for j = 1..n) is

the j'th variable, and Dij the value of variable j for data

item i.

Figure 3: A matrix

3.3 Variable value assignment

The semantics of each variable determines a particular

interpretation  of the domain  of inquiry;  the domain  is

'measured'  in  terms  of  the  semantics,  and  that

measurement  constitutes  the  values  of  the  variables.

Measurement  is  fundamental  in  the  creation  of  data

because it makes the link between data and the world,



and thus allows the results of data analysis to be applied

to understanding of the world (Pyle (1999:ch.2)).

Measurement  is  only possible  in  terms of some scale.

There are various types of measurement scale, and these

are  discussed  in  the  relevant  textbooks  (Hair  et  al.

(1998:6-9), Pyle (1999:ch.2)), but for present purposes

the  main  dichotomy  is  between  numeric  and  non-

numeric.  The  multivariate  methods  referred  to  in  due

course assume numeric measurement, and for that reason

the same is assumed in what follows.

3.4 Data transformation

Once the data has been constructed, it may be necessary

to  transform  it  in  various  ways  prior  to  analysis.

Discussion of these in the abstract can quickly become

intangible. For forestall this, a specific case is assumed:

that the corpus being analyzed is a collection D of some

number m of documents --of Middle English texts, say--

and the research aim is to classify them on the basis of

relative frequency of lexical types that they contain. The

data abstracted from D is an m x n matrix Q in which

i. each of the rows Qi, for  i = 1..m, represents a single

data item --in this case, a document Di.

ii. each column j, for j = 1..n, is one of n  variables, each

representing  a  single  lexical  type  that  occurs  at  least

once in D. 'Lexical type' is here defined as an abstraction

over a set of identical lexical tokens, 'lexical token' as a

string of alphanumeric symbols, and 'abstraction' as a set



label; the lexical type CAT = {x | x = 'cat'}, for example.

On  the  type-token  distinction  see  Manning  /  Schütze

(1999:21-3,124-130), Palmer (2000), and the discussion

by Baroni in chapter 39 of this Handbook.

iii. the matrix elements Qij contain integers representing

the frequency of lexical type j in document i. Each of the

m rows in Q is therefore a frequency profile for a single

text.

Figure 4: Lexical frequency data matrix

Obviously,  this  example  is  only  one  of  many

possibilities.  The  data  items  /  matrix  rows  might  be

informants in a sociolinguistic or dialectological survey

and the variables / matrix columns phonetic segments, or

the rows might be phonetic segments and the columns

phonetic  features  like  voicing,  and so on.  The lexical

frequency  example  was  selected  because  it  is  generic

with respect to a wide range of possible applications. 

3.4.1 Adjustment for variation in document length

Documents  in  collections  often  vary  in  length.  If  the

variation  is  substantial,  the  data  abstracted  from  the

collection must be adjusted to avoid distorted results. To

see why, assume that all the documents are in the same



language, and that, in this language, a given lexical type

j has probability  pj of  occurring.  Then, the longer the

document, the more likely it is that j will occur one or

more times: if pj is 0.01, then on average  j will occur

once every 100 words, twice every 200, and so on. Now,

say that j occurs 10 times in two documents in D, di and

dk. Knowing only this, one would naturally judge that, in

terms of their usage of j, the two documents are identical

and that j is consequently of no use in distinguishing di

from  dj.  If,  however,  one also knows that  di is  1000

words long, and dk only 500, this is no longer the case.

The frequency for di is what one would expect given pj,

but  dk uses  j with higher-than-expected frequency, and

this disparity can be used in distinguishing di from dk: dk,

unlike di, is especially interested in what j denotes. 

What  is  required  is  some  way  of  adjusting  the  data

matrix  so  that  not  just  frequency  but  its  significance

relative to document length can be represented and thus

incorporated into subsequent analysis. One approach is

to transform the rows of the matrix into vectors of length

1:

|| i

i
i Q

Q
Q 

where |Qi| is the norm or length of row vector Qi, defined

as:

2 22
2

2
1 ...|| iniii QQQQ 



The effect  is  to  adjust  the  vector  values  representing

document Qi in proportion to the length of Qi: the greater

the length, the smaller the result of the division and thus

the smaller  the post-adjustment  values  in  Qi,  and vice

versa as the Qi vector length shortens. This adjustment is

part  of  a  method  for  measuring  relative  proximity  of

document vectors in Information Retrieval called cosine

normalization. Another approach is to transform the row

vectors in relation to the average length of documents in

the collection D:

Qi = Qi (μ / lQi)

where  (i)  Qi is  the  i'th  document's  lexical  frequency

profile in the data matrix Q, (ii) lQi is the total number of

lexical tokens in document Qi,  and (iii) μ is the mean

document  length  in  terms  of  lexical  tokens across  all

documents d ε D, so that:

μ = ∑i = 1..m(lQi) / m

Thus, the values in each lexical frequency profile vector

Qi are multiplied by the ratio of the average number of

lexical tokens per document across the collection D to

the number of tokens in Qi. The longer the document the

numerically smaller the ratio, and vice versa; the effect

is  therefore to  decrease  the values  in  the vectors  that

represent long documents, and increase them in vectors

that represent short ones, relative to average document

length.

On transformation of data relative to document length



see  Belew  (2000:89-92),  Lebart  /  Rajman  (2000:477-

505), Singhal et al. (1996).

3.4.2 Sparsity minimization

Sparsity is a major issue in data analysis generally. The

concept of the manifold is central to understanding of

why this  is  so.   It  comes  from mathematical  topology

(Munkres  (2000)),  a  branch  of  pure  mathematics

concerned  with  geometrical  properties;  for  present

purposes it can be understood as the shape of data in n-

dimensional  space.  What  is  the  'shape'  of  data  (Pyle

(1999:84-6))? Consider a reasonably large data set of,

say, 1000 3-dimensional real-valued vectors, no two of

which  are identical.  If  these  vectors  are  plotted  in  3-

dimensional space, they form a cloud of points with an

identifiable shape within the general space, as in Figure

5:

Figure 5: A manifold in 3-dimensional space

That shape is a manifold. The idea extends directly to

any dimensionality, though such general spaces cannot

be  shown  graphically.  For  the  purposes  of  this

discussion, therefore, a manifold is a set of vectors in n-



dimensional space. 

To discern the shape of a manifold, it is intuitively clear

that  there  have  to  be  enough  data  points  to  give  it

adequate definition. If, as in Figure 6a, there are just two

points, the only reasonable manifold to propose is a line;

any  number  of  alternative  manifolds  are,  of  course,

possible  --the two points could come from a far more

complex manifold like Figure 6c-- but to propose this on

the basis of just two points would clearly be unjustified.

a b c

Figure 6: Degrees of manifold definition

Where there are 3 points a plane would be reasonable, as

in Figure 6b. But it is only as the number of data points

grows that the true shape of the manifold emerges, as in

6c.  The general  rule,  therefore,  is:  the  more  data  the

better.  After  a  certain  point,  increasing  the  amount  of

data  becomes  redundant  in  the  sense  that  it  simply

confirms an already-clear manifold shape, but it doesn't

do any harm. 

In dealing with high-dimensional data, however, having

too much is rarely a problem. Quite the opposite --the

usual situation with high-dimensional data is that there is



far  too  little.  High-dimensional  spaces  are  inherently

sparse, and, to achieve adequate definition of the data

manifold,  the  amount  of  data  required  very  rapidly

becomes intractably large; this phenomenon is known as

the  'curse  of  dimensionality'.  To  see  the  problem,

consider three data sets each of which contains 10 items,

no two of which are identical:

i.  Set 1 is univariate,  and the single variable can take

integer values in the range 1..10. The ratio of data points

to possible values is 10/10 = 1, that is, the data points

completely fill the data space.

ii. Set 2 is bivariate, and each of the two variables can

take integer values in the range 1..10. The ratio of data

points to possible value pairs is 10 / (10 x 10) = 0.1, that

is, the data points occupy 10% of the data space.

iii. Set 3 is trivariate, and each of the three variables can

take integer values in the range 1..10. The ratio of data

points to possible value triples is 10 / (10 x 10 x 10) =

0.01, that is, the data points occupy 1% of the data space.

And so on for increasing dimensionality: for a data set of

fixed size d, the ratio of actual  to possible points in the

data space is  d  /  rn, where  r is the number of different

values  that  each  variable  can  take  (assuming  for

simplicity that all variables are identical in this respect).

In other words, as dimensionality increases, the ratio of

actual to possible points in the data space decreases at an

exponential  rate.  In  principle,  therefore,  a  manifold

consisting of some fixed number of vectors very rapidly



becomes sparser as the dimensionality of the space in

which it is embedded grows; to maintain its resolution at

any preferred ratio, the number of vectors required must

therefore grow exponentially with the dimensionality.

Getting enough data becomes a serious problem even at

relatively low dimensionalities, and an insuperable one

soon thereafter. In practice the problem is not as severe

as all this might suggest, since a typical real-world data

set is not in general evenly or randomly spread around

its vector space, but rather tends to be concentrated in

one or more distinct regions of the space. Dimensionality

nevertheless  remains  a  potential  problem  for  data

analysis in any given application, and the moral is that

dimensionality  should  be  kept  as  low  as  possible

consistent  with  the  need  to  describe  the  domain  of

inquiry adequately. 

For  discussion  of  issues  relating  to  high-dimensional

data  see  Bishop  (1995:chs.1,8),  Pyle  (1999:ch.2,355-

60,424-34), Verleysen (2003), Verleysen et al. (2003).

Data  sparsity  has  a  particular  relevance  in  corpus

linguistics  because  the  object  of  study  is  spoken  or

written  natural  language,  and  lexical  distribution  in

samples of natural language have a characteristic shape.

This shape is exemplified in a plot of lexical types in the

Qur'an. The frequencies of these types were calculated,

sorted into descending order of magnitude, and plotted:



a b

Figure 7: Frequencies of lexical types in the Qur'an

Figure 7a is the full plot, and 7b is a zoomed-in region

near the origin to display the shape of that region more

clearly.  There  is  a  relatively  small  number  of  very

frequent  types,  a  moderate  number  of  moderately

frequent  types,  and a large number  of  very infrequent

ones.  This  distribution  is  characteristic  of  lexical

frequency distributions in natural language text generally

(Baayen (2001); see also Manning / Schütze (1999:20-

29)  and  Baroni's  discussion  in  chapter  39  of  this

Handbook), and its shape remains pretty much constant

even for natural language text corpora many orders of

magnitude larger than the Qur'an: the number of the few

very  frequent  types  continues  to  grow quickly  as  the

corpus  size  grows  and  the  number  of  moderately

frequent types continues to grow moderately quickly, but

the  frequencies  of  the  very  infrequent  types  change

hardly at all --instead, more and more types are added to

the list.  It  is  therefore clear  that,  in  corpus linguistics

studies  where  lexical  frequency plays  a  role,  the  data

will in general be very sparse on account of the large

number of infrequent lexical type variables.



The obvious solution to sparsity is to select an optimal

set of variables at the data design stage, but this is more

easily  said  than  done.  As  already noted,  there  is  no

algorithm  for  choosing  an  optimally  relevant  and

therefore  minimal  set  of  variables  for  a  research

question,  and  therefore  no  way  of  knowing  a  priori

whether the dimensionality of a given data set is as low

as it  can be.  Because of this, a range of methods for

transforming  data  matrices  so  as  to  reduce  their

dimensionality has been developed, and, in cases where

the data is sparse, application of one or more or these

methods  can  very  substantially  improve  analytical

results by giving the manifold better definition. 

a) Stemming

Fundamental to the morphologies of many languages is

the process whereby prefixes and suffixes are attached to

lexical  stems,  and/or  the  lexical  stems  themselves

mutated in some way, in order to mark syntactic function

or  some  modification  to  the  primitive  semantic

denotation of the stem. Document collections written in

such languages typically contain more or less numerous

morphological variants of primitive lexical stems. Such

variants can be considered to be equivalent for purposes

of text analysis and information retrieval; stemming is

the reduction of morphological variants to their common

primitive stem.

Where lexical  frequency plays  a  role  in  data  creation,

stemming  offers  scope  for  substantial  dimensionality

reduction.  If  a  lexical  type  is  defined  as  the  set  of



identical alphabetic strings, then each variant of a given

stem is treated as a distinct lexical type and assigned a

column  in  the  data  matrix.  If,  however,  all  the

morphological variants of a stem are collapsed into an

equivalence class which then constitutes the lexical type,

so  that,  for  example,  the  type  CAT  =  {x |  x =  a

morphological  variant  of  'cat'}  such  as  'cats',  'catty',

'cattery' and so on, the number of types and thus columns

of the frequency matrix can be more or less substantially

reduced, depending on the morphological characteristics

of the language in question.  The frequency of a lexical

type so defined in the frequency matrix is then the sum

of the frequencies of the aggregated variants.

At  first  glance  it  might  seem  that  creation  of  such

equivalence classes loses information, and that this loss

is  bound  adversely  to  affect  the  validity  of  analyses

based on the data. Just the opposite is true, however. If

lexical  types  are  regarded  as  sets  of  identical  tokens,

then  each  type  is  represented  as  a  separate  variable

column in the data matrix, and all columns are treated

equally  in  the  analytical  methods  cited  later.  The

implication is that morphologically related tokens are

treated  exactly  the  same  as  unrelated  ones.  In  other

words,  there  is  no  distinction  between  the  semantic

distances among morphological variants of a single stem

on the one hand, and those between unrelated stems on

the other --the semantic difference between 'administer'

and  'administration'  is  taken  to  be  the  same  as  that

between 'administer' and 'cow'. If, as here, the aim is to

classify  documents  on  the  basis  of  their  lexical



semantics, this is bound to distort the data and thus the

analytical results based on it. Creation of equivalence

classes based on morphological relatedness eliminates

this distortion.

On  stemming  algorithms  and  their  application  in

computational  text  processing  see  Frakes  (1992)  and

Hull (1996).  

b) Variable selection

A seminal principle in Information Retrieval, extensively

confirmed  by empirical  results,  is  that  not  all  lexical

types  in  a  document  collection  are  equally  useful  in

document  classification  (for  example,  Belew

(2000:ch.3), van Rijsbergen (1979:ch.2), Salton / McGill

(1983:ch.3)).  Various  ways  of  identifying  relatively

more  useful  variables  exist,  and this  section  gives  an

overview of some of the most often used ones. The focus

is on lexical frequency in document collections, but the

techniques  are  straightforwardly  applicable  to  other

kinds of data, and thus to a wide range of analyses in

corpus linguistics.

i.  Dimensionality  reduction  based on lexical  type  fre-

quency

Luhn,  one  of  the  founders  of  modern  Information

Retrieval, proposed that the relative frequency of lexical

types in a document collection is a fundamental criterion

for  classifying  documents  relative  to  one  another

(discussed  in  Belew  (2000:76ff),  van  Rijsbergen



(1979:15ff), Salton / McGill (1983:60-63)). The intuition

underlying  this  is  simple:  if  an  author  uses  a  word

repeatedly in a text, then the text is more likely to be

about what the word denotes than it is to be about the

denotation  of  a  word  that  is  infrequently  used;

documents  with  similar  lexical  frequency  profiles  are

classified together and distinguished from those whose

profiles are different. Luhn also observed, however, that

the  usefulness  of  a  lexical  type  for  document

classification  does  not  increase  monotonically  with

frequency, and more specifically that very frequent types

on the one hand and very infrequent ones on the other

are less useful for the purpose than medium frequency

ones. He therefore proposed that both very infrequent

and  very  frequent  words  be  discarded.  Substantial

dimensionality reduction can be achieved in this way,

but  Luhn  did  not  provide  any  clear  criteria  for

determining upper and lower frequency thresholds, and

there  is  consequently  the  ever-present  danger  that  too

many  or  too  few  types  will  be  eliminated,  thus

compromising classification based on the set of retained

variables. 

ii. Dimensionality reduction based on variance

As  we saw in  the  foregoing  discussion  of  data,  any

variable  x is  an  interpretation  of  some  aspect  of  the

world, and a value assigned to x is a measurement of the

world in terms of that interpretation. If x is to describe

more than one object --the heights of 1000 people, say--

then it  must  take  values  characteristic  of  each person.



Unless all 1000 people are exactly the same height, these

values will vary. This possibility of variation gives x its

descriptive utility: a constant value for x says that what x

represents  in  the  world  does  not  change,  moderate

variation in the value says that that aspect of the world

changes only a little, and widely differing values that it

changes  substantially.  In  general,  therefore,  the

possibility  of  variation  in  the  values  assigned  to

variables  is  fundamental  to  the  ability  of  variables  to

represent reality.

Classification of documents or of anything else therefore

depends on there being variation in their characteristics.

When  the  objects  to  be  classified  are  described  by

variables,  then  the  variables  are  only  useful  for  the

purpose if there is significant variation in the values that

it  takes.  If,  for example,  a large random collection  of

people was described by variables like height, weight,

and  income,  there  would  be  substantial  variation  in

values for each of them, and they could legitimately be

used to classify the people in the sample. On the other

hand,  a  variable  like  'has  nose' would  be  effectively

useless, since, with very few exceptions, everyone has a

nose --there would be almost no variation in the boolean

value 1 for this variable. In any classification exercize,

therefore, one is looking for variables with substantial

variation in their values, and can disregard variables with

little or no variation.

Mathematically, the degree of variation in the values of a

variable is described by its variance. The variance of a



set of variable values is the average deviation of those

values from their mean. Assume a set of  n values {x1,

x2...xn}  assigned  to  a  variable  x.  The  mean  of  these

values µ is (x1 + x2 + ... + xn) / n. The amount by which

any given value  xi differs from  µ is then  xi -  µ.  The

average difference from µ across all values is therefore

Σi=1..n (xi -  µ)  /  n.  This  average difference of variable

values from their mean almost but not quite corresponds

to the definition of variance. One more step is necessary,

and it is technical rather than conceptual. Because µ is

an average, some of the variable values will be greater

than µ, and some will be less. Consequently, some of the

differences (xi -  µ) will be positive and some negative.

When all the (xi - µ) are added up, as above, they will

cancel each other out. To prevent this, the (xi -  µ) are

squared. The standard definition of variance for n values

{x1, x2...xn} assigned to a variable x, therefore, is:

 

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Given a data matrix Q in which the rows are cases and

the  columns  are  lexical  type  variables  describing  the

cases, and also that the aim is to classify the cases on the

basis of the differences among them, the application of

variance to dimensionality reduction is straightforward:

eliminate  all  variables  with  low  variance,  that  is,

variables whose values do not vary enough for them to

be useful in document classification. As with the upper

and lower thresholds discussed in the preceding section,

this begs the question of how low is too low, that is, of



selecting a threshold. 

iii. Lexical frequency distribution

Spärck Jones  (1972) proposed what  was to  become a

standard principle in Information Retrieval: that a lexical

type's  usefulness  is  determined  not  by  its  absolute

frequency  across  a  collection,  but  by  the  pattern  of

variation in its frequency across the documents. To gain

an intuition for this, assume a collection of documents

related to the computer industry. At one end of the range

are very low frequency words that, as expected, are of

little or no use for document classification: a word like

'coffee' that occurs a few times in one or two documents

that caution against spills into keyboards is insignificant

in relation to the semantic content of the collection as a

whole, and a word like 'bicycle' that occurs only once

tells  us only that the document in which it  appears is

unique on that criterion. At the other end of the range, a

word like 'computer' and its morphological variants is

likely to be both very frequent across the collection and

to occur in most if not all the documents, and as such is a

poor criterion for classifying documents despite its high

absolute  frequency:  if  all  the  documents  are  about

computers,  being  about  computers  is  not  a  useful

distinguishing criterion. In short, lexical frequency on its

own is not a reliable classification criterion.  The most

useful lexical types are those whose occurrences are both

relatively frequent and not, like 'computer',  uniformly

spread across all collection documents  but rather occur

in clumps, such that a relatively few documents contain



most or all the occurrences, and the rest of the collection

few or none; 'debug',  for example,  can be expected to

occur frequently in documents that are primarily about

computer programming and compiler design, but only

infrequently  if  at  all  in  those  about,  say,  word

processing. On this criterion, lexical types are selected in

accordance with their 'clumpiness' of occurrence across

documents in a collection. 

Three  methods  used  in  Information  Retrieval  for

determining clumpiness in data are: 

i.  TF.IDF  ('Term  Frequency  x  Inverse  Document

Frequency'):  Belew  (2000:84-5),  Buckley  (1993),

Robertson  (2004),  Roberston  /  Spärck  Jones  (2004),

Salton / McGill (1983:63), Spärck-Jones (1972).

ii.  Signal-noise  ratio:  Belew  (2000:83-4),  Salton  /

McGill (1983:63-6). 

iii. Poisson term distribution:  Belew (2000:73 ff), van

Rijsbergen (1979:27-9); Church / Gayle (1995a, 1995b).

Space constraints  do not  permit  these to  be described

here, and the reader is referred to the cited references.

c) Variable redefinition

Dimensionality reduction can be achieved by replacing

the  variables  that  have  been  chosen  to  describe  the

domain of interest with different variables that describe

the domain as well as, or almost as well as, the originals,

but are fewer in number. 



We have seen that a data set of  n-dimensional vectors

defines  a  manifold  in  n-dimensional  space.  In  such a

space, it is possible in principle to have manifolds whose

dimensionality  is  k,  where  k <  n.  Consider  the  3-

dimensional data set in Figure 8a:

v

1

v2 v3

1 0.5 0.4

2 1 0.8

3 1.5 1.2

4 2 1.6

5 2.5 2

6 3 2.4

7 3.5 2.8

8 4 3.2

9 4.5 3.6

1

0

5 4

a b

Figure 8: A one-dimensional manifold in 3-

dimensional space

Plotting  this  data  in  3-dimensional  space  (Figure  8b)

shows  it  to  describe  a  line.  But  that  line  can  be

redescribed in 2 dimensions:



v

1

v3

1 0.

4

2 0.

8

3 1.

2

4 1.

6

5 2

6 2.

4

7 2.

8

8 3.

2

9 3.

6

10 4

a b

Figure 9: A one-dimensional manifold in 2-

dimensional space

In fact, the line can be redescribed in 1 dimension -- its

length, 10.63-- by its distance from 0 on the real-number

line:



Figure 10: A one-dimensional manifold in 1-

dimensional space

Consider  another  example  --a  plane  in  3-dimensional

space:

Figure 11: A two-dimensional manifold in 3-

dimensional space

This plane can be redescribed in 2-dimensional space



Figure 12: A two-dimensional manifold in 2-

dimensional space

And, as usual, this concept extends straightforwardly to

any dimensionality.

In  general,  therefore,  a  line  can  be  described  in  one

dimension,  two  dimensions,  three  dimensions,  or  any

number of dimensions one likes. Essentially, though, it is

a  1-dimensional  object;  its  ‘intrinsic  dimensionality’

(Verleysen  (2003))  is  1.  The  minimum  number  of

dimensions  required  to  describe  a  line  is  1;  higher-

dimensional descriptions are possible but redundant. A

plane was described in two and three dimensions. Could

it also, like a line, be described in one dimension? No:

the  intrinsic  dimensionality  of  a  plane  is  2  --the

corresponding data set must be 2-dimensional at least,

giving the coordinates of the points that describe it. 

The  concept  of  intrinsic  dimensionality  applies

straightforwardly  to  dimensionality  reduction.  The

informational content of data is conceptualized as a  k-

dimensional  manifold  in  the  n-dimensional  space

defined by the data variables. Where k = n, that is, where

the intrinsic dimensionality of the data corresponds to

the  number  of  data  variables,  no  dimensionality

reduction  is  possible  without  significant  loss  of

information. However, the foregoing discussion of data

creation  noted  that,  when  describing  a  domain  of

interest, selection of variables is at the discretion of the

researcher. It is therefore possible that the selection of

variables in any given application will be suboptimal in



the sense that there is redundancy among the variables,

that is, that they overlap with one another in terms of the

information  they  represent  about  the  domain;  where

there is a significant amount of redundancy, it is possible

in principle to represent this information using a smaller

number of variables, thus reducing the dimensionality of

the  data.  In  such  a  case,  the  aim  of  dimensionality

reduction  of  data  is  to  discover  its  intrinsic

dimensionality  k,  for  k <  n,  and  to  redescribe  its

informational content in terms of those k dimensions.

The  most  often  used  variable  redefinition  method  is

principal  component  analysis  (PCA),  on  which  see

Jolliffe  (2002);  briefer  accounts  are  in  Bishop

(1995:310-14),  Everitt  /  Dunn  (2001:ch.3),  Grimm  /

Yarnold (1995:99-134), Hair et al. (1998:87-138), Oakes

(1998:96-108),  Tabachnick  /  Fidell  (2006),  Webb

(2002:319-44),  Woods  et  al.  (1986:ch.15).  PCA  is  a

particular case of Singular Value Decomposition (SVD)

on which  see Lebart  /  Rajman (2000) and Manning /

Schütze (1999:554-66). Both PCA and SVD are linear

methods;  nonlinear  variable  definition  methods  are

described  in  Diamantaras  /  Kung  (1996),  Bishop

(1995:314-19), Pyle (1999:355-83).

3.4.3 Data linearization

In physical systems there is a fundamental distinction

between  linear  and  nonlinear  behaviour.  To  get  an

intuition for what is involved, and why the distinction is

important, here is an experiment. Kick a ball and note

how far it goes. Kick it again, but this time twice as hard,



and  once  again  note  how  far  it  goes.  The  natural

expectation  is  that  it  will  go  twice  as  far,  and  this

expectation  is  fulfilled.  This  is  linear  behaviour:  the

effect  is  proportional  to  the  cause.  But  take  the

experiment further. Kick the ball in a series, each time

twice as hard as the time before: k, 2k, 4k, 8k and so on.

If it goes 10 metres for k, and 20 metres for 2k, will it

also go 40 metres for 4k, and 80 metres for 8k? No. As it

is kicked harder and harder, it goes faster and further.

Air resistance becomes a factor at higher speeds, and so

does rolling resistance. The ball might only go 78 metres

for  an  8k  kick,  and  150  metres  for  a  16k  kick,  etc.

Eventually, the kick will be so hard that the ball bursts

and goes  hardly any distance  at  all.  This  is  nonlinear

behaviour:  it  is  the  breakdown  of  proportionality

between cause and effect in physical systems, and it can

generate  a  variety  of  complex  and  often  unexpected

--including chaotic-- behaviours. In nature there are few

truly linear systems. Nonlinearity pervades the physical

world  (Bertuglia  (2005)),  and,  because  it  does,  data

manifolds that describe the world are likely to contain

nonlinearities.  Figure  13a  shows  a  linear  relationship

between  two  variables  x and  y,  and  figure  13b  a

nonlinear one:

a b



Figure 13: Linear and nonlinear 1-dimensional

manifolds

In the linear  case there  is  an invariant  proportionality

between x and y, and that invariance is represented by a

straight  line;  in  the  nonlinear  case,  the  relationship

between  x and  y  varies with different values of  x, and

that  variance  is  represented by a curved line.  In three

dimensions, linear data might generate a plane (Figure

14a) and nonlinear data a curved surface (Figure 14b): 

Figure 14: Linear and nonlinear 2-dimensional

manifolds

In  general,  linear  manifolds  are  lines  and planes,  and

nonlinear ones curves and curved surfaces; these cannot

be  shown  graphically  for  higher  dimensionalities.

Nonlinear  manifolds  can  range  from  fairly  simple

curves, as above, to highly complex ones.

The first  step is  to determine  whether  or not a  given

matrix  in  fact  contains  significant  nonlinearity.  This

seems obvious, but, for high-dimensional data, it is not

always or even usually straightforward. In the light of



the foregoing observation that nonlinearity pervades the

natural  world,  the  strong  suspicion  must  be  that  the

generating process is nonlinear, but this is not certain.

Even if the generating process is known to be nonlinear,

moreover,  there is  no guarantee  that  every data  set  it

generates  will  contain  nonlinearities.  This  sounds

paradoxical,  but  consider  the  shape  of  the  familiar

nonlinear  logistic  function,  which  models  a  range  of

natural processes:

Figure 15: Graph of logistic function

Though it is nonlinear globally, there is a relatively large

interval that is linear or near-linear; if the data of interest

happens to come from that interval of output values, then

it is linear even though it was generated by a nonlinear

process.  A priori  reasoning  cannot,  in  short,  establish

whether  or  not  a  data  set  contains  significant

nonlinearities. Only direct examination of the data will

establish  this.  The  usual  method  is  to  plot  pairs  of

variables and then examine the plots for deviation from

linearity, but where the number of variables is large this

quickly becomes burdensome (Hair et al. (1998:75- 83),

Tabachnick  /  Fidell  (2006)).  One  alternative  is  to

linearize  the  data  matrix  (for  example  Croft  et  al.

(1992:350-64)).  The  nonlinearities  may,  however,



themselves be of interest, and linearization throws the

baby out with the bath water. Another alternative is to

use  an  analytical  method  that  can  accommodate

nonlinearities, on which more below.

4. Exploratory multivariate methods

Exploratory  methods  are  essentially  variations  on  a

theme: cluster analysis. Cluster analysis aims to identify

and graphically  to  represent  nonrandomness  in  the

distribution of vectors in  n-dimensional space. Spatial

regularities  in  the  graphical  representations  are

interpreted  as  reflecting  regularities  in  the  natural

process that generated the data, and support hypotheses

about the characteristics of the process. In Figure 16a,

for  example,  the  vectors  are  spread  more  or  less

uniformly  in  two-dimensional  space;  there  are  some

local  concentrations,  but  these  are  not  clearly  defined

and it is difficult to infer anything about the process that

generated  the  data  other  than  that  it  appears  to  be

broadly random. In Figure 16b, on the other hand, there

are clearly defined concentrations of vectors such that

two groups of points are spatially relatively close in each

group, and spatially relatively far from each other, which

suggests  that  the  generating  process  is  strongly

nonrandom.



a b

Figure 16: Random and nonrandom data

In two or  three  dimensions,  such distributions  can  be

plotted and interpreted by eye. In higher dimensions this

is  no  longer  possible,  however;  the  various  cluster

analysis methods are just different ways of representing

nonrandom  structure  in  higher-dimensional  data

graphically in two or three dimensional space.

There is an extensive range of cluster analysis methods

together with a large associated literature: for example

Arabie et al. (1992), Duda et al. (2001:ch.10), Everitt /

Dunn (2001), Everitt et al. (2001), Gordon (1999), Gore

(2000),  Grimm  /  Yarnold  (1995,  2000),  Hair  et  al.

(1998:ch.9),  Jain  /  Dubes  (1988),  Jain  et  al. (1999),

Kachigan  (1991),  Manning  /  Schütze  (1999:ch.14),

Oakes  (1998:ch.3),  Tan  et  al.  (2006:ch.8,9),  Tinsley  /

Brown  (2000),  Tabachnick  /  Fidell  (2006),  Webb

(2002:ch.10),  Woods  et  al.  (1986:ch.14).  There  is  no

hope of describing individual methods in detail here, so

what follows gives an overview in three parts. The first

part  introduces  basic  issues  in  cluster  analysis,  the

second  cites  some  commonly  used  methods,  and  the

third issues a caution about using those methods.

a) Basic issues

The  most  important  thing  to  realize  about  cluster

analysis is that there is no single 'best' method; see for

example Everitt et al. (2001:ch.8), Tan et al. (2006:639-



42).  In  any particular  application,  selection  of  one  or

more  methods  must  be  informed  by  a  variety  of

considerations, three of the most important of which are:

i. How much is known about the cluster structure of the

data?

In cluster analysis there is a distinction between methods

which make no a priori assumptions about the structure

of given data and attempt to discover clusters purely on

the basis of the data's characteristics, and those which

presuppose  that  the  data  has  a  cluster  structure  and

require  specification  of  the  number  of  clusters  in

advance of analysis.  If little or nothing is known about

the cluster structure, then one of the former methods is

appropriate,  but  if  there  is  a  reasonable  degree  of

certainty about its structure then one of the latter type of

method,  such  as  k-means  clustering  or  kernel-based

adaptive  algorithms,  can  be  used  (for  survey of  these

methods  see  Webb (2002)).  The  present  discussion  is

concerned  with  exploratory  analysis,  and  as  such  is

henceforth concerned only with methods that make no a

priori assumptions about data.

ii. Is the data linear or nonlinear?

The  selected  method  or  methods  must  be  compatible

with  the  data  being  analyzed.  For  continuous-valued

numerical  data  such as  that  being  discussed  here,  the

main  criterion  for  compatibility  is  whether  the  data

manifold is linear or not. Data that contains significant

nonlinearity  must  be  analyzed  using  a  nonlinear



clustering method; use of a linear method in such a case

misrepresents the structure of the data to greater or lesser

degrees,  depending  on  the  nature  of  the  nonlinearity.

What  does  it  means  for  a  method  to  be  linear  or

nonlinear? Assume a curved manifold in  n-dimensional

space. What is the distance dij between any two points i

and j on that manifold? A linear method measures that

distance as a straight line joining the points, ignoring the

manifold's  curvature,  whereas  a  nonlinear  method

measures the distance along the surface of the manifold,

thereby taking account of the curvature. Depending on

the amount of curvature, the difference between the two

measures  can  be  significant  and  can  therefore

significantly affect analysis based on it. An example is

the  distance  between  two  points  A  and  B  on  the

perimeter of the circle in Figure 17: the linear distance

between them is a chord drawn through the interior, and

the nonlinear one the length of the perimeter segment

between the points as indicated by the arc in the figure:

Figure 17: Linear and nonlinear distance

Consider,  for  example,  the  problem  of  discovering  a

classification for the data in Figure 18a. The data space

must be partitioned such that all the points in the left-

hand cluster fall into one partition, and all the points in



the right-hand cluster into another. Linear methods are,

by definition, limited to doing this using straight lines or

surfaces; in this case, that is sufficient. 

a b

Figure 18: Linearly separable clusters

For the data in figure 19a, however, there is no straight

line  that  can  separate  the  two  clusters  without

misclassifying  some of the points,  as in 19b. What  is

required  for  correction  classification  is  a  method  for

finding a nonlinear partition, as in 19c. 

a b c

Figure 19: Nonlinearly separable clusters

iii. Is a hierarchical or nonhierarchical analysis required?

The  fundamental  aim  of  exploratory  analysis  is  to

generate hypotheses about some domain of inquiry, and

it  may be that,  in  any particular  case,  some methods

provide  representations  of  structure  that  do  this  more

usefully  than  others.  The  main  distinction  among



methods  in  this  regard  is  between those that  generate

hierarchically ordered clusters, and those that do not and

are  therefore  described  as  nonhierarchical.

Nonhierarchical  methods  generate  graphical

representations in two or three dimensional space such

that,  given  a  suitable  measure  of  proximity,  vectors

which are spatially or topologically relatively close to

one another in high-dimensional space are spatially or

topologically close to one another in their two or three

dimensional  representation,  and  vectors  which  are

relatively  far  from  one  another  in  high-dimensional

space  are  clearly  separated,  either  by  relative  spatial

distance or by some other graphical means, resulting --in

the case of nonrandom data-- in a configuration of well

defined clusters.  Figures  18 and 19 above are a  two-

dimensional  example;  a  three-dimensional  one  might

look like Figure 20:

Figure 20: Clusters in 3-dimensional space

Hierarchical  methods,  on  the  other  hand,  represent

proximity  structure  in  high-dimensional  data  not  as

spatial clusters but as 'dendrograms':



Figure 21: A cluster dendrogram

A dendrogram is simply a tree of the kind linguists are

familiar  with  from  sentence  structure  analysis.  It  is

shown horizontally rather in the vertical orientation that

is  more  usual  in linguistics  in order to  make it  more

readily representable on a page,  and the labels  at  the

'leaves' are not lexical tokens but labels for the vectors in

the data set --'1' is the first vector, '2' the second, and so

on. Like a linguistic phrase structure tree, a dendrogram

shows constituency structure: in this tree, vectors 1 and 7

constitute a 'phrase' that combined with vector 8 so form

a  superordinate  'phrase',  which  itself  combines  with

(4,9,10,5) to form an even higher-level 'phrase', and so

on. Unlike a linguistic phrase structure tree, however,

this  one  represents  not  grammatical  constituency  but

vector proximity in n-dimensional space: vectors 1 and 7

are relatively very close and both of them are quite close

to 8; vectors 4 and 9 are relatively close and both are

quite  close  to  10;  and  so  on.  And,  again  unlike

grammatical  phrase  structure  trees,  the  lengths  of  the

branches linking 'phrases' represents relative degrees of

proximity: that the lines for linking 4 and 9 are relatively

very short indicates that the corresponding vectors are

close  in  n-dimensional  space,  but  the  relatively  long



lines  between  (1,7,8)  and  (4,9,10,5)  indicate

considerable  distance.  In  the  light  of  this,  the  cluster

interpretation of the above tree is straightforward: there

are two main clusters: (1,7,8,4,9,10,5) and (2,6,3); within

each  of  the  two  main  clusters  there  are  subclusters

(1,7,8) and (4,9,10,5), and (2,6) and (3); and so on.

b) Cluster analysis methods

This section lists some widely-used exploratory cluster

analysis  methods.  It  is  not  even nearly exhaustive;  an

extensive range of methods is available, for which the

reader  is  referred  to  the  literature  on  cluster  analysis

cited earlier in this section.

i. Linear methods

Hierarchical linear methods comprise a group of closely

related  algorithms  which  define  proximity  in  n-

dimensional space, the nature of a cluster, and clustering

algorithms in a variety of ways: see for example Duda et

al.  (2001:ch.10),  Everitt  et  al.  (2001),  Everitt  /  Dunn

(2001:ch.6), Gordon (1999:69-109), Gore (2000), Hair et

al. (1998:469-518), Jain et al. (1999:275-9), Kachigan

(1991:261-70), Oakes (1998:110-120). 

Nonhierarchical linear methods include PCA and SVD

in that, if dimensionality is reduced to 2 or 3, the data

vectors  can  be  displayed  and  any  clusters  visually

identified  using  conventional  plotting  tools.  Another

widely-used  linear  nonhierarchical  method  is

Multidimensional  Scaling:  Borg  /  Groenen  (2005),



Davison  /  Sireci  (2000),  Everitt  /  Dunn  (2001:ch.5),

Gordon (1999:157-67), Grimm / Yarnold (1995:137-68),

Hair  et  al.  (1998:519-74),  Kachigan  (1991:271-78),

Woods et al. (1986:262-65).

ii. Nonlinear methods

In parallel with linear PCA and SVD, nonlinear variable

redefinition methods can be used for cluster analysis if

dimensionality is reduced to 2 or 3 (Bishop (1995:314-

19),  Pyle  (1999:358-83),  Diamantaras  /  Kung  (1996),

Duda  et  al.  (2001:569-70),  Grimes  (2006)).  Beyond

these, there is a good range of methods, such as Isomap

(Tenenbaum et al.  (2000), Locally Linear Embedding

(Roweis / Saul (2000), and the very widely used (Kaski

et  al. 1998;  Oja  et  al. 2001)  Self-Organizing  Map

(Kohonen (2001)).

c) Caution

Different methods can and often do generate different

results  when applied  to  the  same data.  This  is  partly

because  the  methods  make  explicit  or  implicit

assumptions about what constitutes a cluster and how

clusters so defined can be algorithmically identified, and

partly because they depend to greater or lesser degrees

on parameter values that are user-specified, often on a

heuristic basis. It is not obvious which method and/or

combination of parameter values is to be preferred in any

specific  application,  or why.  This leads  to  an obvious

question: what are these clustering methods really telling

us about  the structure of the data they describe --how



reliable, in other words, are they, and are they in fact of

any use at all if they cannot be relied on to reveal the

true structure of the data?

In the literature  there  are  two main  approaches  to  an

answer.  One is  to  attempt  to  establish  the validity  of

cluster results using numerical measures (Everitt et al.

(2001:ch.8),  Duda  et  al. (2001:557-9),  Tan  et  al.

(2006:532-55)). The other approach is to apply a variety

of different clustering methods to the same data and to

compare  the  results:  a  clear  convergence  on  one

particular cluster structure is held to support the validity

of that structure with respect to the data. And, of course,

the two approaches can be used in combination. 

6. Exploratory multivariate analysis in corpus linguistics

Any collection or written or spoken language potentially

comes within the remit of corpus linguistics, and as such

'corpus linguistics' can include not only the traditional

subdisciplines of linguistics proper such as phonology,

morphology, and so on, but also the philological work

that comes under the heading 'humanities computing' as

well as information retrieval and data mining from full-

text collections. To keep the length of this section within

reasonable  bounds,  therefore,  there  is  no  attempt  at

exhaustiveness. The aim is rather to provide a selection

of references that is representative of the applications of

exploratory multivariate methods to language corpora.



Language classification: Kita (1999).





Phonetics & phonology: Berdan (1978), Miller /

Nicely (1955), Shepard (1972, Jassem / Lobacz

(1995).



Morphology: Oakes / Taylor (1994).



Syntax: Gries (2001), Gamallo et al. (2005).



Lexical semantics  & word-sense disambiguation:

Yarowsky  (2000),  Stevenson  /  Wilks  (2003),

Pedersen (2006); Watters (2002), Landauer et

al. (1998), Zernik (1991).



Dialectology: Babitch / LeBrun (1989), Chambers /

Trudgill  (1998:135-48),  Herringa  /  Nerbonne

(2001), Kessler (1995), Kleiweg et al. (2004),

Nerbonne / Heeringa (2001). 



Sociolinguistics:  Chambers  (1995),  Horvath

(1985),  Jones-Sargent  (1983),  Moisl  /  Jones

(2005), Moisl / Maguire / Allen (2006), Sankoff

et al. (1989).



Language register / textual genre variation: Biber

and his co-workers have published extensively

on this topic. See Biber's discussion in Chapter

40 of this Handbook, which also contains a full

bibliography. 





Text classification: Lebart / Rajman (2000), Willett

(1988), Manning / Schütze (1999:ch.16). Includ-

ed here also is the large amount of work in In-

formation Retrieval and Data Mining: see for

example Belew (2000), Salton / McGill (1983),

van  Rijsbergen  (1979),  Strzalkowski  (1999),

Tan et al. (2006), Webb (2002). 



Stylometry:  Hoover  (2003),  Ledger  (1995),  Lin-

mans (1998), McEnery / Oakes (2000), Mealand

(1995), Temple (1996). See also Oakes' discus-

sion in chapter 52 of this Handbook.
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