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Abstract

Moisl [1, 2] proposed a model of how the brain implements intrinsic intentionality with respect

to  lexical  and  sentence  meaning,  where  'intrinsic'  is  understood  as  'independent  of

interpretation  by  observers  external  to  the  cognitive  agent'.  The discussion  in  both  was

mainly philosophical and qualitative; the present paper gives a mathematical account of the

distance  structure  preservation  that  underlies  the  proposed  mechanism  of  intrinsic

intentionality. The three-layer autoassociative multilayer perceptron (aMLP) architecture with

nonlinear hidden and linear output layers is the component in the model which generates

representations homomorphic with the environment. The discussion first cites existing work

which  identifies  the  aMLP  as  an  implementation  architecture  for  principal  component

analysis (PCA), and then goes on to argue that the homomorphism characteristic of linear

functions like PCA extends to aMLPs with nonlinear activation functions in the hidden layer.

The  discussion  is  in  two main  parts:  the  first  part  outlines  the  model,  and  the  second

presents the mathematical account.

1. Introduction

Moisl [1, 2] proposed a model of how the brain implements intrinsic intentionality with respect to

lexical and sentence meaning, where 'intrinsic' is understood as 'independent of interpretation by

observers external to the cognitive agent'. The discussion in both was mainly philosophical and

qualitative; the present paper gives a mathematical account of the distance structure preservation

that underlies the proposed mechanism of intrinsic intentionality.  The discussion is in two main

parts: the first part outlines the model, and the second presents the mathematical account.

2. Outline

2.1 Intentionality

Humans intuitively feel that they possess a head-internal meaningfulness, that is, an awareness of

the self and its relationship to the perceived world which is independent of interpretation of one's

behaviour by observers. This intuition is captured by the philosophical concept of intentionality [3-

5] which is used in present-day philosophy of mind to denote the 'aboutness' of mental states, 'the

power of minds and mental states to be about, to represent, or to stand for, things, properties and

states of affairs' [3].

In  1980  and  subsequent  publications  [6]  the  philosopher  John  Searle  argued  that  the  then-

dominant theoretical framework in cognitive science, the Computational Theory of Mind (CTM; [7]),

was incapable of explaining how the mind comes to possess this head-internal meaningfulness -

what Searle called original intentionality. The essence of his position was that CTM representations

lack  intrinsic  meaning because their  meaning  is  dependent  on ascription  by an  observer.  He

distinguished two types of intentionality, original and derived. The locus of original intentionality is



the human head,  and derived intentionality is  that  which we attribute to physical  mechanisms

which we have good reason to believe do not have original intentionality, such as thermostats,

whose operation is routinely interpreted by humans as wanting to maintain an even temperature

but  whose structure is  too simple for  it  to have desires.  His  argument is that,  with respect  to

intentionality, a computer is like a thermostat. The argument is based on his well known Chinese

Room thought experiment. There is a closed room containing Searle and a list of rules in English

for  manipulating  Chinese  orthographic  symbols.  Chinese  speakers  outside  the  room  put

sequences of these symbols into the room and, using the rules available to him, Searle assembles

and outputs sequences of Chinese symbols in response. The people outside interpret the input

sequences as sentences in Chinese whose meaning they understand and the output sequences

as reasonable responses to them, and on the basis of the room's conceptually coherent input-

output behaviour conclude that it understands Chinese. Searle himself, however, knows that the

room does not understand Chinese because he, the interpreter and constructor of the sequences,

does not understand Chinese, but is only following instructions without knowing what the input and

output sequences mean.

The Room is,  of  course,  a  computer.  Searle  is  the  CPU,  the list  of  English  instructions  is  a

program,  and  the  input-output  sequences  are  symbol  strings;  by  concluding  that  the  room

understands Chinese, its observers have confirmed the Turing Test [8], which says that any device

which  can by  its  behaviour  convince  observers  that  it  has  human-level  intentionality  must  be

considered to possess it.  Searle knows, however,  that  the room's intentionality is derived,  the

implication being that physical computer implementations of CTM models, like thermostats, only

have derived intentionality.  The intentionality of the symbols manipulated by the algorithm of a

CTM model is in the heads and only in the heads of their human designers. When physically

instantiated,  for  example  by  compilation  of  a  CTM  model  onto  a  physical  computer,  this

intentionality  is  lost:  the  symbols  of  the interpreted model  cease to be symbolic  and become

physical bit-strings which drive the physical causal dynamics of the machine, but intentionality is

not a factor in that dynamics. The behaviour of the machine can be interpreted as intentional, just

as the behaviour  of  the Chinese Room or a thermostat  can be,  but  the semantics is  derived

because  the  only  locus  of  intentionality  is  in  the  heads  of  observers.  Put  simply,  a  physical

computer does not understand what it is doing any more than a vending machine does. It only

pushes physical bit-strings around, and humans interpret that activity as intentional [9].

Searle's position remains controversial among philosophers of mind and cognitive scientists more

generally after four decades [6] - a clear indication that it is a substantive one worthy of serious

consideration. Rather than add to the already-voluminous literature bearing on it, Moisl [1, 2] as

well  as  the  present  discussion  simply  accept  the  validity  of  Searle's  position  and,  on  that

assumption, propose a way of modelling intrinsic intentionality at the implementation level.

2.2 The Implementation Level

The black box problem in system identification [10] builds models of physical systems based on

observation of responses to system input: given a box whose internal mechanism is hidden but

whose  input-output  behaviour  is  observable,  what  mechanism  inside  the  box  generates  that

behaviour? The answer is that there is an arbitrary number of possible different mechanisms for

any given input-output behaviour ([11], Ch. 3.2); the only way to know for certain what's in the box



is to look inside. 

Applied to black boxes in general, the doctrine of emergence in the philosophy of science [12]

addresses the relationship of physics to the 'special' sciences, which study objects, properties, or

behaviours that emerge from the physical substrate of the natural world. The standard view is that

the sciences are related via levels of description whereby any physical system can be described at

an arbitrary number  of  levels  using  a  theoretical  ontology  appropriate  to  each,  every level  is

explanatorily  autonomous  with  respect  to  the  others  subject  to  the  constraint  of  consistency

between and among levels, and selection of any particular level is determined by the research

question  being  asked.  The  principle  of  supervenience  [13]  says  that  descriptions  of  natural

systems constitute a hierarchy where the properties at any given level implement those at the level

above.  For  the  physical  monist  [14],  everything in  the  natural  world  is  physical  and therefore

describable using the theoretical ontology of physics, but this does not rule out the ontologies of

sciences addressing supervenient phenomena or require their reduction to physics [14, 15] on the

grounds that different theoretical ontologies are needed to capture different sorts of regularity in

nature.

For  linguistic  meaning  the  black  box  is  the  human  head  and  the  input-output  behaviour  is

conversation. The CTM view of what's in the head is that it is a Turing Machine whose program is

cognition.  When  the  box  is  opened,  however,  one  looks  in  vain  for  the  data  structures  and

algorithms of CTM, and finds instead billions of interconnected neurons. Some have argued that

study of the brain by cognitive neuroscience will supplant the theoretical ontology of CTM, but this

is not the majority view [16]. The alternative adopted here is nonreductive physicalism [14], which

in a cognitive science context says that accounts of the structure and operation of mind and brain

are  separate  and  autonomous  levels  of  description.  It  accepts  that  human  cognition  is

implemented by and only by the physical  brain,  but  maintains that  this  does not  preclude the

mentalistic  ontology  of  CTM or  require  its  reduction  to  neuroscience.  The present  discussion

focuses on the implementation level - the physical mechanism of intentionality.

2.3 Meaning

Proposal of an implementation model implies clarity about what is being implemented. 'Meaning' is

understood, and its theoretical characterization is approached, in a variety of ways, for an overview

of which see [17]. Speaks [17]  distinguishes 'logical' approaches in the tradition of Frege, where

meaning  is  seen  as  semantic  interpretation  of  symbols  in  an  abstract  formal  system,  and

'foundational' approaches which focus on the mechanism of semantic interpretation; foundational

approaches are subcategorized into 'use' theories such as those of Grice, and 'mentalistic' ones

which relate linguistic meaning to the structure of  cognition.  The present  discussion takes the

mentalistic  approach.  Specifically,  it  adopts the tradition  in  Western  thought  [18]  ranging from

Aristotle  to  theories  of  mental  content  in  present-day  linguistics  and  cognitive  science  more

generally [19] that the meaning of a word is its signification of a mental concept, and a mental

concept is a representation of the mind-external environment causally generated by the cognitive

agent's interaction with that environment. In recent times this tradition has continued in attempts to

'naturalize'  the mind, that  is,  to see the mind as an aspect  of the natural  world and therefore

theoretically explicable in terms of the natural sciences [4, 20]. The precursors of naturalism were

empiricist philosphers like like Mill (1806-73; [21]) and scientists like von Helmholtz (1821–1894;



[22]) and Mach (1838–1916; [23]). Von Helmholtz stressed the importance of sensory perception of

and  bodily  interaction  with  the  environment  in  generating  a  coherent  system  of  mental

representation whose structure mirrors that of the environment, and Mach saw human mentality as

a  teleological  dynamical  system tending  to  equilibrium with  the  environment  via  sensory  and

enactive  interaction.  In  the  present  day,  the  tradition  exists  in  a  variety  of  disciplines  and

approaches  to  the  study  of  mind  and  language:  naturalistic,  evolutionary,  and  teleological

epistemology [5, 24, 25], externalist semantics in philosophy of mind [26], evolutionary psychology

[27]  and embodied cognition in  cognitive psychology [28-30],  cognitive linguistics [31,  32]  and

conceptual semantics [33, 34] in generative linguistics.

2.4 The Model

According to Searle, 'intentionality in human beings (and animals) is a product of causal features

of  the  brain',  and  'any  attempt  literally  to  create  intentionality  artificially  (strong  AI)  could  not

succeed just by designing programs but would have to duplicate the causal powers of the human

brain'. Since the validity of Searle's position was and in the present discussion continues to be

assumed, the choice of artificial neural networks (ANN) as the modelling framework was obvious:

though  radically  simplified  with  respect  to  the  biological  brain,  they  do  retain  its  fundamental

architectural  characteristics  as  a  collection  of  massively  interconnected  processing  units  that

learns to represent environmental inputs via synaptic strength modification. The research question

that  motivates  the  present  discussion  thereby  becomes:  How  can  the  brain  or  a  physical

mechanism analogous to it implement intrinsic intentionality?

The  solution  proposed  for  implementation  of  lexical  intentionality  was  the  structure  of

interconnected ANNs shown in Figure 1.

Figure 1. The structure of the lexical intentionality model.

Spoken  word  and  visual  inputs  from  an  environment  are  simultaneously  presented  to  their

eponymous subnets, where sequences of representations are generated in their respective hidden



layers;  the  numbers  of  units  in  the  various  subnets  are  small  for  tractability  of  graphical

presentation  and  would  need  to  be  much  larger  in  a  practical  implementation.  These

representations are associated in the association subnet, whose hidden layer was argued to be the

implementation of lexical intentionality, that is, of the meaning of the word.

Fundamental to the model is the autoassociative multilayer perceptron (aMLP), an example of

which is shown in Figure 2.

Figure 2. Example of an autoassociative multilayer perceptron.

The aMLP appears as the audio input subnet in Figure 1, and with feedback in the word and visual

subnets.  The  input  and  target  output  of  an  aMLP are  identical,  so  that  after  training  with  a

collection of inputs I, presentation of any given input Ij generates Ij in the output units. The hidden

layer, which contains fewer units, is a compact representation of Ij, and when the representations

of all the components of I were cluster analyzed, their structure was found to be similar to that of I;

'similar' as understood here is defined in Section 3. For example, if I is the collection of the 26 letter

forms of the Roman alphabet represented as 12 × 12 bitmaps, as shown in Figure 3, an aMLP is

able to learn representations of the similarity structure of these bitmaps in its hidden layer,  as

shown by the cluster analyses in Figure 4.

Figure 3.  A letter bitmap.



Figure 4. Cluster trees for letter bitmaps and their aMLP representations.

The  idea  that  the  structure of  head-internal  representations generated  by  a  cognitive agent's

interaction with  an agent-external environment is similar to the spatial and temporal structure of

that environment  has  a  long  history  in  cognitive  science.  It  was  proposed  in  Antiquity by

philosopers like Aristotle, Augustine, and Boethius [18] and, more recently, by Mach [23] and von

Helmholtz [22]; current examples are ([4, 5, 19, 35-53]). 

The relevance of  similarity-based models to present concerns is that they can be understood as

implementation-level models  of intrinsic intentionality in biological brains. Their implication is that

the formal similarity structure of the neural activations which causally drive brain dynamics reflect

the similarity structure of mind-external objects and their interactions, and are thereby 'about' the

mind-external world without involvement of a system-external interpreter.

The model in Figure 1

(i.) causally generates its own system-internal representations of external environmental input.

(ii.) The physical form of these representations is determined by that which they represent. 

(iii.) For a given environmental domain, the structure of the representations is similar to that of

the domain and thereby model it.

(iv.) The representations are causal in the input-output behaviour of the system. 

Assuming the validity of the foregoing comments about the relevance of  structural similarity to

modelling of intentionality, the structure in Figure 1 is a mapping of words to visual states of the

world, and thereby a model of a physical system that implements intrinsic lexical intentionality.

Finally, it is freely admitted that Figure 1 is too simple to serve as a general implementation model

for lexical meaning. It does not, for example, address the intentionality of what classical antiquity

and medieval scholastic philosophy called universals [18] like "truth" and, more prosaically, the

abstract  category  "human",  which  have  no  existence  in  the  mind-external  world  and  cannot



therefore generate sensory representations. Nor does it incorporate the extensive neuroscientific

work on the integration of language and object recognition reviewed, for example, in Plebe and de

la  Cruz  ([54]:  Ch.  6);  as  one  of  the  reviewers  of  this  paper  pointed  out  with  respect  to  the

input/target output identity of an aMLP, 'it is not properly true that -in humans- the same sensory

input always generates the same output due to phenomena such as learning, adaptation, and

updating'. Figure 1 is, however, not intended as a general model for lexical meaning. The intention

is much more limited and specific: to propose a possible solution to Searle's problem of intrinsic

intentionality in physical systems. The research question was and is:  'How can the brain or a

physical mechanism analogous to it implement intrinsic intentionality?'. The proposed answer is:

structural similarity of system inputs and their system-internal representations.

3. Mathematics

This part of the discussion describes a way of understanding the foregoing preservation of input

similarity  structure  in  system-internal representations  as  mathematical  homomorphism;  the

references  for  standard  mathematical  topics  used  in  what  follows  are  Gowers  et  al  [55]  and

Weisstein [56], and for artificial neural networks the reference is Aggarwal [57]. 

In current mathematics a space is understood as a pair S = (Obj, Op),  where  Obj  is  a set of

mathematical objects of some particular type and Op is a set of operations defined on Obj such as

scalar  multiplication  defined  on  vectors.  The  input,  hidden,  and  output  layers  of  ANNs  are

mathematically represented as real-valued vectors, so what follows will focus on vector spaces. 

A vector  space  is  a  set  V  of  vectors  and  the  associated  operations  are  vector  addition  and

multiplication of a vector by a scalar. In what follows, some way of characterizing distances among

vectors in V will be required, and these two operations on their own are insufficient for that. What is

required is a metric d,  that  is,  a function that returns a measure of  the distance between two

vectors v and w ϵ V, inclusion of which transforms a vector space into a metric space. The most

familiar metric space is the n-dimensional Euclidian in which the metric is Euclidian distance, the

shortest distance between two points. Input, hidden, and output aMLP layers are here interpreted

as Euclidian spaces.

A homomorphism is a structure-preserving map between two spaces ([55]),  and in the present

case between two Euclidean ones. We are interested in determining whether or not the distance

structure of the input space of an aMLP is preserved in its hidden layer space, where preservation

of distance structure is taken to be systematic preservation of proportionality of Euclidean distance

between of any two vectors v and w in two spaces of possibly-different dimensionalities.

Every linear transformation of vectors in a Euclidean space is homomorphic. This is exemplified in

principal component analysis (PCA; [58, 59]); the relevance of this example will emerge shortly.

PCA transforms a Euclidean input space E1 into a Euclidean output space E2 by linear combination

of the vectors in E1, and the distance structure of E1 is preserved in E2. For example, Figure 5a

shows a cluster analysis of the letter matrix, henceforth L, described in Section 2, and Figure 5b of

its PCA transformation:



a: Cluster analysis of L b: Cluster analysis of the PCA-transformed
version of L

Figure 5. Cluster analyses of L and its PCA transformation, both 144-dimensional.

Hierarchical cluster analysis constructs its trees on the basis of relative Euclidean distances

between and among vectors; the trees in Figure 5 are identical, so it follows that distance structure

has been preserved. This applies, within limits, to projection of a matrix of dimensionality  m to

another of dimensionality n, where n < m. PCA is extensively used as a linear data dimensionality

reduction method. Say,  for example, that one wants to reduce the 144-dimensional L to a 50-

dimensional one. The result is shown in Figure 6.



a: Cluster analysis of L b: Cluster analysis of L PCA-reduced to
dimensionality 50

Figure  6. Cluster  analyses  of  144-dimensional  L  and  the  PCA-transformed  50-

dimensional version.

Again, the trees are identical. But, as noted, there is a limit. PCA is often used to reduce high-

dimensionality matrices to dimensionality 2 or 3 for graphical display; reduction to dimensionality 3

is shown in Figure 7.

a: Cluster analysis of L b: Cluster analysis of L PCA-reduced to
dimensionality 3

Figure  7. Cluster  analyses  of  144-dimensional  L  and  the  PCA-transformed  3-

dimensional version.

There is  a family resemblance between the trees,  but  they also differ  substantially.  What has

happened to distance preservation is that dimensionality has been reduced to a value lower than

the intrinsic dimensionality of the letter data matrix, where intrinsic dimensionality is the minimum

number of variables required to represent a given data matrix without significant loss of information

([60], Ch. 3).

PCA provides a criterion for identifying intrinsic dimensionality. One of the ways of calculating PCA

is by matrix eigendecomposition which, briefly,  works as follows. Given a mean-centred  m ×  n

matrix M, PCA creates a covariance matrix C = MTM/(m-1) and then abstracts two matrices from C:

Evect, whose columns are the eigenvectors of C and constitute the orthogonal basis of a new vector

space  into  which  M  will  be  projected,  and  Eval,  which  is  a  diagonal  matrix  containing  the

eigenvalues of C in descending order of magnitude and which represent the lengths of the new

basis vectors, that is, the amount of variance in M that each of the basis vectors represents. It

often happens that data is redundant in the sense that the variance of its variables overlaps. The



eigenvalues in  Eval make it possible to identify such redundancy: the largest eigenvalue and the

corresponding eigenvector  represent  the largest  direction of  variance in  M,  the second-largest

eigenvalue and the corresponding eigenvector represent the second largest direction of variance in

M, and so on to n. Plotting the eigenvalues provides an indication of intrinsic dimensionality, that is,

of how many mutually orthogonal variables are required to represent the variability in  M without

significant loss of information. The eigenvalue plot for the covariance matrix abstracted from L is

shown in Figure 8.

Figure 8. Distribution of Eval.

The intrinsic dimensionality is about 25; going below that compromises distance preservation.

The reason for going into all this is that, since Baldi & Hornik made the connection explicit in 1989,

the aMLP architecture has been recognized as an implementation of PCA (for example, [57, 61-

63]). The significance of this for present purposes is that the homomorphism characteristic of PCA

thereby applies also to aMLPs.

An  alternative  to  the  eigenvalue  decomposition  method  for  calculating  PCA is  singular  value

decomposition (SVD; [58, 59, 64]). Explanation of how an aMLP implements PCA is simpler via

SVD, and this follows. 

SVD is a theorem in linear algebra which says that any real-valued matrix D with  m rows and n

columns can be represented as the product of three matrices:

Dm,n = Um,mSm,nVT
n,n

where

• U, S, and V are the matrices whose product gives D.

• The column vectors of U are the eigenvectors of the square matrix which results from the

multiplication  of  D  by  a  transposition  of  itself,  that  is,  DDT,  and  these  constitute  an

orthonormal basis for the column vectors of D.



• The column vectors of V are the eigenvectors of the square matrix which results from the

multiplication of DT by D, that is, DTD, and these constitute an orthonormal basis for the row

vectors of D.

• S is  a  diagonal  matrix,  that  is,  a  matrix  having  non-negative  real  values  on  its  main

diagonal. These values are the singular values of D in descending order of magnitude, and

are the square roots of the eigenvalues of DDT or DTD.

When D is a covariance or correlation matrix SVD and PCA are identical. SVA is more general than

PCA because it  can be applied to matrices of arbitrary dimensions with unrestricted numerical

values whereas PCA is restricted to square matrices containing covariances and correlations, but

in practice it is a straightforward matter to calculate a covariance or correlation matrix for whatever

matrix one wants to analyze, so the choice between SVD and PCA is a matter of preference.

Both eigenvalue decomposition and SVD simply restate the given matrix D in a new vector space

having an orthogonal basis and the same dimensionality as D. But one of the main uses of PCA is

dimensionality reduction. With the eigendecomposition approach this is achieved by selecting the

first  k largest  eigenvalues  from  Eval 
and  deleting  all  the  columns  k+1...n from  Evect prior  to

multiplication by M, that is, MEvect, thereby projecting the original m-dimensional matrix into the k-

dimensional space. The corresponding SVD operation is to select the the first k columns from S,

yielding Sk, and then to multiply USk, which results in an m × k matrix consisting of the largest k

principal components.

How does all this relate to aMLP architecture? Given D, an aMLP with hidden layer dimensionality

k approximates the USk product and V matrices of SVD by using a gradient descent method, back

propagation, to optimize the standard mean squared error objective function, which minimizes the

difference between the target output and the actual output of the aMLP with respect to D. Once

trained, each of the m row vectors of D generates a k-dimensional hidden layer activation vector,

and all m hidden layer vectors constitute an m × k matrix H which is an approximation to the USk

matrix of SVD; for details see Aggarwal ([57]).

There is, however, a caveat. Homomorphism is a concept from linear algebra, and it applies to

linear functions of which PCA is one. When the unit activation functions of an aMLP are uniformly

linear the homomorphism property of PCA transfers directly [65]. But restricting aMLP architecture

in this way confines it to implementation of linear identity functions, and in real-world applications

much if not most input data will be nonlinear to some degree (see for example [66]), so aMLP

architecture since the time of  Baldi  & Hornik  [65]  has incorporated nonlinearity in  the form of

nonlinear unit activation functions in the hidden layer. The question is: does homomorphism still

apply?

Bourlard & Kamp [67] argued that 'for auto-association with linear output units, the optimal weight

values  can  be  derived  by  standard  linear  algebra,  consisting  essentially  in  singular  value

decomposition (SVD)  and making thus the nonlinear  functions  at  the  hidden layer  completely

unnecessary';  see also Cottrell  and Munro [68]  to  much the same effect.  In  other  words,  the

presence of nonlinear activation in the hidden layer of an aMLP makes no difference - the aMLP

remains a linear system, and as such homomorphism still applies. This seems implausible in the

light of proofs by Cybenko [69] and Hornik & Stinchcombe [70] that MLPs with nonlinear hidden



units are universal function approximators - in Cybenko's words, 'that arbitrary decision regions

can be arbitrarily well approximated by continuous feedforward neural networks with only a single

internal,  hidden layer and any continuous sigmoidal nonlinearity'.  Given that data derived from

observation  of  the  real  world  is  typically  nonlinear  to  some degree,  as  noted,  an  aMLP with

nonlinear hidden units will  be able to implement the identity function with respect to such data

whereas one with a linear hidden layer will not. The implication is that Bourlard & Kamp's claim

applies  only  where  the  input  data  is  linear  or  falls  within  the  linear  interval  of  the  sigmoid

nonlinearity.  This is in fact  what  Japkowicz et  al  [71]  argued and supported with experimental

evidence in a paper entitled 'Nonlinear Autoassociation Is Not Equivalent to PCA'. The question

therefore remains: does homomorphism still apply when the activation function of the hidden layer

of an aMLP is nonlinear?

The obvious way to test this in the present application is to train an aMLP with a nonlinear hidden

layer and a linear output layer using the letter bitmap matrix L, and then to compare the cluster tree

for the matrix of hidden layer vectors H generated by the trained net with that for L. The approach

needs to be more nuanced than that, however. The number of hidden units k in an aMLP, and in

artificial neural networks generally, is known to have a strong effect on convergence to whatever

function is being implemented,  and,  traditionally,  choice of that number has been heuristic - a

heuristic choice of  k  with a negative result  with respect  to homomorphism doesn't  necessarily

mean that nonlinear aMLPs fail to preserve homomorphism, because a different choice of k might

give a positive result.  One approach is simply to try a series of random  k.  A more systematic

approach, taken here, is as follows:

1. Train the net using a range of hidden layer sizes, say n = 1...200, and then generate the

hidden layer matrix H as above. 

2. Calculate a matrix Dhidden containing the Euclidean distances between all pairs of rows in H.

3. Calculate a matrix Dinput containing the Euclidean distances between all pairs of rows in L.

4. Row-wise concatenate the values below the main diagonals of Dhidden and Dinput to yield two

vectors dvhidden and dvinput respectively.

5. Pearson-correlate dvhidden 
and dvinput and save the correlation value in a vector vcorr.

6. Plot vcorr.

The underlying intuition is that the correlation vector captures the degree of distance structure

similarity between L and H. Figure 9 is a plot of correlations from the above sequence applied to L

for k = 1...200 using the standard sigmoid nonlinearity with range 0...1.



Figure 9. Correlations of input and hidden layer distance vectors for hidden layer sizes

1...200.

Correlation  is  low  for  small  hidden  layer  sizes  but  grows  rapidly  as  the  size  increases  and

eventually flatlines at a correlation that fluctuates in the range 0.90...0.95; Spearman correlation

gave the same distribution shape with the same numerical range. There is a strong correlation for

distance vectors of hidden layer size c.25 onwards, and so the conclusion is that the distance

relations in the input data are preserved in the hidden layer for those values of k, that is, the aMLP

generates a good approximation to homomorphism with respect to preservation of input distance

structure in the present application. Figure 10 shows a comparison of the cluster trees for L and H

for k = 200, and they are virtually identical.

a: L b: H



Figure 10. Cluster trees (average linkage) for L and H.

Further empirical results indicate that the distance structure preservation of nonlinear single hidden

layer aMLPs generalizes. Experiments using the foregoing methodology were conducted using

randomly generated binary input matrices with various combinations of the numbers of rows and

columns  in  the  range  12-48,  keeping  these quantities  small  for  tractability.  The shape  of  the

correlations  was  always  very  similar  to  that  in  Figure  9,  with  maximum correlations  in  range

0.90...0.98. 

That said, it is the case that generalizations based on inductive inference from evidence cannot

constitute proof [72]. The results just cited are indicative, but a secure theoretical basis would be

useful. 

Finally, a single layer aMLP with sigmoid hidden and linear output layer has been shown to be a

universal  function  approximator,  as  noted,  given  a  sufficient  number  of  hidden  units,  so  this

architecture  should  be  all  that's  required  to  generate  homomorphic  representations  of

environmental  input  for  the  model  which  is  the  focus  of  this  paper.  In  practice,  however,  'a

sufficient number of hidden units' in any given application may well be found to be very large, and

this raises the problem of overfitting, where the neural network learns the input data accurately but

generalizes poorly to unseen data from the same input distribution [57]. The response in the neural

network research community has been so-called deep learning, whereby multiple hidden layers of

relatively small dimensionality replace the single and potentially large single hidden layer in the

aMLP,  as  pioneered  by  Kramer  [73];  see  also,  for  example,  Hsieh  [74],  Scholz  et  al  [62],

Goodfellow  et  al  [75],  Aggarwal  [57].  It  remains  to  be  seen  whether  the  hidden  layer

representations of such deep learning networks are also homomorphic with their inputs.

4. Conclusion

The  aim  of  the  foregoing  discussion  was  to  show  how  the  homomorphism  between  the

environment and its system-internal representation in a model of intrinsic linguistic intentionality, as

implemented by a  three-layer  autoassociative  multilayer  perceptron with  nonlinear  hidden and

linear output layers, can be understood mathematically. Existing work which sees such aMLPs as

implementations of principal component analysis was cited, the implication of which is that the

homomorphism characteristic of linear functions in general applies also to aMLPs. To extend the

range of identity functions that can be implemented by an aMLP, however, nonlinear activation

functions  can  be,  and  in  the  model  in  question  are,  used  in  the  hidden  layer;  because

homomorphism  is  currently  understood  as  a  characteristic  of  specifically  linear  functions,  its

preservation in a nonlinear MLP is not guaranteed. Experimental results were used to show that it

is  preserved in  example  applictions,  but  it  was  noted that  generalizations  based on inductive

inference from evidence cannot be proof, and that a secure theoretical basis would be useful. The

discussion also noted that use of a multilayer 'deep learning' aMLP would address the potential

problem of overfitting when a single hidden layer aMLP is used, but that homomorphism in such

network would need to be demonstrated.
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