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1.0 INTRODUCTION

The aim of science is to understand reality.  An academic discipline,

philosophy of science, is devoted to explicating the nature of science and its

relationship to reality, and, perhaps predictably, both are controversial; for an

excellent  introduction  to  the  issues  see  (Chalmers  1999).  In  practice,

however,  most  scientists  explicitly  or  implicitly  assume a view of  scientific

methodology based on the philosophy of Karl Popper (Popper 1959; Popper

1963),  in  which  one  or  more  non-contradictory  hypotheses  about  some

domain  of  interest  are  stated,  the  validity  of  the  hypotheses  is  tested  by

observation of the domain, and the hypotheses are either confirmed (but not

proven) if they are compatible with observation, or rejected if they are not.

Where do such hypotheses come from? In principle it doesn't matter, because

the validity of the claims they make can always be assessed with reference to

the observable state of the world. Any one of us, whatever our background,

could wake up in the middle of the night with an utterly novel and brilliant

hypothesis that, say, unifies quantum mechanics and Einsteinian relativity, but

this  kind of  inspiration  is  highly  unlikely  and must  be exceedingly  rare.  In

practice,  scientists  develop  hypotheses  in  something  like  the  following

sequence of steps: the researcher (i) selects some aspect of reality that s/he

wants to understand, (ii) becomes familiar with the selected research domain

by observation of it, reads the associated research literature, and formulates a



research  question  which,  if  convincingly  answered,  will  enhance  scientific

understanding of the domain, (iii) abstracts data from the domain and draws

inferences from it in the light of the research literature, and (iv) on the basis of

these inferences states a hypothesis to answer the research question. The

hypothesis is subsequently tested for validity with reference to the domain and

emended as required.

Linguistics  is  a  science,  and as  such uses  or  should  use scientific

methodology. The research domain is human language, and, in the process of

hypothesis  generation,  the  data  comes from observation  of  language use.

Such observation can be based on introspection, since every native speaker

is an expert on the usage of his or her language. It can also be based on

observation of the linguistic usage of others in either spoken or written form.

In  some  subdisciplines  like  historical  linguistics,  sociolinguistics,  and

dialectology, the latter is in fact the only possible alternative, and this is why

D'Arcy (this volume) stresses the importance of linguistic corpora in language

variation research: corpora are 'the foundation of everything we do'. 

Traditionally,  hypothesis  generation  based  on  linguistic  corpora  has

involved  the  researcher  listening  to  or  reading  through  a  corpus,  often

repeatedly, noting features of interest, and then formulating a hypothesis. The

advent of information technology in general and of digital  representation of

text in particular in the past few decades has made this often-onerous process

much easier via a range of computational tools, but, as the amount of digitally-

represented language available to linguists has grown, a new problem has

emerged: data overload. Actual and potential language corpora are growing

ever-larger,  and even now they can be on the limit  of  what  the individual



researcher can work through efficiently in the traditional way. Moreover, as we

shall see, data abstracted from such large corpora can be impenetrable to

understanding. One approach to the problem is to deal only with corpora of

tractable size,  or,  equivalently,  with  tractable subsets of  large corpora, but

ignoring  potential  data  in  so  unprincipled  a  way  is  not  scientifically

respectable.  The  alternative  is  to  use  mathematically-based  computational

tools  for  data  exploration  developed  in  the  physical  and  social  sciences,

where data overload has long been a problem. This latter alternative is the

one explored here. Specifically, the discussion shows how a particular type of

computational  tool,  cluster  analysis,  can  be  used  in  the  formulation  of

hypotheses in corpus-based linguistic research.

The  discussion  is  in  three  main  parts.  The  first  describes  data

abstraction  from  corpora,  the  second  outlines  the  principles  of  cluster

analysis, and the third shows how the results of cluster analysis can be used

in  the  formulation  of  hypotheses.  Examples  are  based  on  the  Newcastle

Electronic Corpus of Tyneside English (NECTE), a corpus of dialect speech

(Allen et al. 2007). The overall approach is introductory, and as such the aim

has  been  to  make  the  material  accessible  to  as  broad  a  readership  as

possible. 

2. DATA CREATION

'Data' comes from the Latin verb 'to give' and means 'things that are

given'. Data are therefore things to be accepted at face value, true statements

about the world.  What is a true statement about the world? That question has

been  debated  in  philosophical  metaphysics  since  Antiquity  and  probably



before (Bunnin and Yu 2009; Flew and Priest 2002; Zalta 2009), and, in our

own  time,  has  been  intensively  studied  by  the  disciplines  that  comprise

cognitive  science  (for  example  Thagard  2005).  The  issues  are  complex,

controversy  abounds,  and  the  associated  academic  literatures  are  vast  --

saying  what  a  true  statement  about  the  world  might  be  is  anything  but

straightforward.  We  can't  go  into  all  this,  and  so  will  adopt  the  attitude

prevalent in most areas of science: data are abstractions of what we observe

using our senses, often with the aid of instruments (Chalmers 1999).

Data are ontologically different from the world.  The world is as it is;

data are an interpretation of it for the purpose of scientific study. The weather

is  not  the  meteorologist’s  data  –measurements  of  such  things  as  air

temperature are. A text corpus is not the linguist’s data –measurements of

such  things  as  average  sentence  length  are.  Data  are  constructed  from

observation of things in the world, and the process of construction raises a

range of issues that determine the amenability of the data to analysis and the

interpretability of the analytical results. The importance of understanding such

data issues in cluster analysis can hardly be overstated. On the one hand,

nothing can be discovered that is beyond the limits of the data itself. On the

other, failure to understand relevant characteristics of data can lead to results

and interpretations that are distorted or even worthless. For these reasons, a

detailed account of data issues is given before moving on to discussion of

analytical methods.

 

2.1 Formulation of a research question



In general, any aspect of the world can be described in an arbitrary

number of ways and to arbitrary degrees of precision. The implications of this

go straight to the heart of the debate on the nature of science and scientific

theories, but to avoid being drawn into that debate, this discussion adopts the

position that is pretty much standard in scientific practice: the view, based on

Karl Popper's philosophy of science (Popper 1959; Popper 1963; Chalmers

1999), that there is no theory-free observation of the world. In essence, this

means that there is no such thing as objective observation in science. Entities

in  a domain of  inquiry  only  become relevant  to  observation  in  terms of  a

hypothesis  framed  using  the  ontology  and  axioms  of  a  theory  about  the

domain. For example, in linguistic analysis, variables are selected in terms of

the discipline of linguistics broadly defined, which includes the division into

subdisciplines such as sociolinguistics and dialectology, the subcategorization

within  subdisciplines  such  as  phonetics  through  syntax  to  semantics  and

pragmatics  in  formal  grammar,  and  theoretical  entities  within  each

subcategory such as phonemes in phonology and constituency structures in

syntax.  Claims,  occasionally  seen,  that  the  variables  used  to  describe  a

corpus are 'theoretically neutral' are naive: even word categories like 'noun'

and  'verb'  are  interpretative  constructs  that  imply  a  certain  view  of  how

language  works,  and  they  only  appear  to  be  theory-neutral  because  of

familiarity with long-established tradition.

Data can, therefore, only be created in relation to a research question

that  is  defined  on  the  domain  of  interest,  and  that  thereby  provides  an

interpretative orientation. Without such an orientation, how does one know

what to observe, what is important, and what is not? 



The domain of interest in the present case is the Newcastle Electronic

Corpus of Tyneside English (NECTE),  a corpus of dialect speech interviews

from Tyneside in North-East England1 (Allen et al. 2007).

Figure 1

Moisl et al. (2006) and  Moisl and Maguire (2008) have begun the study of the

NECTE  corpus  with  the  aim  of  generating  hypotheses  about  phonetic

variation among speakers in the Tyneside dialect area using cluster analysis.

The research question asked in that work, and which serves as the basis for

what follows here, is: 

Is  there  systematic  phonetic  variation  in  the  Tyneside  speech

community, and , if  so, what are the main phonetic determinants of

that variation?

These studies went  on to correlate the findings with social  data about the

speakers, but the present discussion does not engage with that.

2.2 Variable selection

Given that data are an interpretation of some domain of interest, what

does such an interpretation  look like? It  is  a  description  of  entities  in  the

domain in terms of variables. A variable is a symbol, and as such is a physical

entity  with  a  conventional  semantics,  where  a  conventional  semantics  is

understood as one in which the designation of a physical thing as a symbol

together with  the connection between the symbol and what it represents are

1 http://www.ncl.ac.uk/necte/

http://www.ncl.ac.uk/necte/


determined by agreement within a community. The symbol ‘A’, for example,

represents the phoneme /a/  by common assent,  not  because there is any

necessary connection between it and what it represents. Since each variable

has a conventional semantics, the set of variables chosen to describe entities

constitutes the template in terms of which the domain is interpreted. Selection

of  appropriate  variables  is,  therefore,  crucial  to  the  success  of  any  data

analysis.

Which variables are appropriate in any given case? That depends on

the nature of  the research question.  The fundamental  principle  in  variable

selection is that the variables must describe all and only those aspects of the

domain  that  are  relevant  to  the  research  question.  In  general,  this  is  an

unattainable ideal. Any domain can be described by an essentially arbitrary

number of finite sets of variables; selection of one particular set can only be

done on the basis of personal knowledge of the domain and of the body of

scientific theory associated with it, tempered by personal discretion. In other

words, there is no algorithm for choosing an optimally relevant set of variables

for a research question.

Which  variables  are  suitable  to  describe  the  NECTE  speakers?  In

principle, when setting out to perform a classification of a speech corpus, the

first step is to partition each speaker's analog speech signal into a sequence

of discrete phonetic segments and to represent those segments symbolically,

or, in other words, to transcribe the audio interviews. To do this, one has to

decide which features of the audio signal are of interest, and then to define a

set of variables to represent those features. These decisions were made long

ago with respect to the NECTE interviews.



NECTE is based on two pre-existing corpora, one of them collected in

the late 1960s by the Tyneside Linguistic Survey (TLS) project (Strang 1968;

Pellowe et al. 1972), and the other in 1994 by the Phonological Variation and

Change in Contemporary Spoken English (PVC) project (Milroy et al. 1997).

For present purposes we are interested in the 63 interviews that comprise the

TLS component  of  NECTE, and it  happens that  the TLS researchers had

already created phonetic transcriptions of at least part of each interview. This

saved the NECTE project the arduous labour of transcription, but at the same

time bound us to their decisions about which phonetic features are of interest,

and how they should be symbolically represented as variables. Details of the

TLS transcription scheme are available in (Allen et al. 2007) as well as at the

NECTE website2
; a short excerpt from the TLS transcription scheme is given

in figure 2 below:

Figure 2

Two  levels  of  transcription  were  produced,  a  highly  detailed  narrow  one

designated  'States'  in  figure  2,  and  a  superordinate  ‘Putative  Diasystemic

Variables’  (PDV)  level  which  collapsed  some  of  the  finer  distinctions

transcribed at the ‘States’ level. We shall  be dealing with the less detailed

PDV level.

2.3 Variable value assignment

The semantics of each variable determines a particular interpretation of

the  domain  of  interest,  and  the  domain  is  'measured'  in  terms  of  the

2  http://www.ncl.ac.uk/necte/appendix1.htm

http://www.ncl.ac.uk/necte/


semantics. That measurement constitutes the values of the variables: height

in  metres  =  1.71,  weight  in  kilograms  =  70,  and  so  on.  Measurement  is

fundamental in the creation of data because it makes the link between data

and the world, and thus allows the results of data analysis to be applied to the

understanding of the world.

Measurement  is  only  possible  in  terms  of  some  scale.  There  are

various types of measurement scale, and these are discussed at length in, for

example, any statistics textbook, but for present purposes the main dichotomy

is  between  numeric  and  non-numeric.  Cluster  analysis  methods  assume

numeric measurement as the default case, and for that reason the same is

assumed in what follows. Specifically, we shall be interested in the number of

times  each  speaker  uses  each  of  the  NECTE  phonetic  variables.  The

speakers are therefore 'measured' in terms of the frequency with which they

use these segments

2.4 Data representation

If they are to be analyzed using mathematically-based computational

methods, the descriptions of the entities in the domain of interest in terms of

the selected variables must  be mathematically represented. A widely used

way of  doing this,  and the one adopted here,  is  to  use structures from a

branch  of  mathematics  known  as  linear  algebra.  There  are  numerous

textbooks  and  websites  devoted  to  linear  algebra;  a  small  selection  of

introductory  textbooks  is  (Anton  2005;  Poole  2005;  Blyth  and  Robertson

2002). 



Vectors  are  fundamental  in  data  representation.  A  vector  is  just  a

sequence of numbered slots containing numerical values. Figure 3 shows a

four-element vector each element of which contains a real-valued number: 1.6

is the value of the first element v1, 2.4 the value of the second element v2, and

so on.

Figure 3

 

A single NECTE speaker's frequency of usage of the 158 phonetic segments

in the transcription scheme can be represented by a 158-element vector in

which each element is associated with a different segment, as in Figure 4.

Figure 4

 

This speaker uses the segment at Speaker1 twenty three times, the segment

at Speaker2 four times, and so on. 

The 63 speaker vectors can be assembled into a matrix M, shown in

figure  5,  in  which  the  63  rows  represent  the  speakers,  the  158  columns

represent the phonetic segments, and the value at M ij is the number of times

speaker i uses segment j (for i = 1..63 and j = 1..158):

Figure 5

This matrix M is the basis of subsequent analysis.

3. DATA ANALYSIS

Once the  data  matrix  has been created,  a  variety  of  computational

methods can be used to classify its row vectors, and thereby the objects in the



domain that the row vectors represent. In the present case, those objects are

the NECTE speakers. The discussion is in 4 main parts:

 Part 1 motivates the use of computational methods for clustering. 

 Part 2 introduces a fundamental concept: vector space. 

 Part 3 describes how clusters can be found in vector space. 

 Part 4 deals with some issues that arise in clustering. 

All  four  parts  of  the  discussion  are  based  on  the  NECTE data  matrix  M

developed in the preceding section.

3.1 Motivation

We have seen that  creation of  data for  study of  a domain requires

description  of  the  objects  in  the  domain  in  terms of  variables.  One might

choose to observe only one aspect -the height of individuals in a population,

say-  in  which  case  the  data  consists  of  more  or  less  numerous  values

assigned to one variable; such data is univariate. If two values are observed

-say height and weight- then the data is bivariate, if three trivariate, and so on

up  to  some  arbitrary  number  n;  any  data  where  n is  greater  than  1  is

multivariate.

As the number of variables grows, so does the difficulty of classifying

the objects that the data matrix rows represent by direct inspection. Consider,

for example, figure 6, which shows a matrix describing nine people in terms of

a single variable Age.

Figure 6



It's  easy  enough  to  classify  these  people  into  three  groups:  young  (1-3),

middle-aged (4-6), and old (7-9) just by looking at the matrix. If one adds a

second  variable  weight,  as  in  figure  7,  classification  based  on  direct

examination of the matrix is a little more difficult.

Figure 7

The groups are the same as before, and there is a correlation between age

and weight:  the young group weighs least,  the middle aged group weighs

most, and the old group weighs a little less than the middle-aged one. Now

increase the number of variables to, say, six, as in figure 8.

Figure 8

One can spend a long time looking at these numbers without coming up with

a coherent grouping. And what if the number of variables is increased even

more to, say, the 158 variables of the NECTE data matrix M? That matrix is

too large to be shown here in its entirety, so only a dozen variables are given

for nine of the speakers in figure 9, but even this is sufficient to make the

required point.

Figure 9

Group these speakers on the basis of this phonetic segment frequency data.

Difficult?  Impossible? Try all  158 variables,  and classify  not  just  9  but  63

speakers.

In general, as the number of variables grows, so does the difficulty of

understanding the data, that is,  of  conceptualizing the interrelationships of



variables within a single data item on the one hand, and the interrelationships

of complete data items on the other. The moral  is straightforward:  human

cognitive  makeup  is  unsuited  to  seeing  regularities  in  anything  but  the

smallest  collections  of  numerical  data.  To  see  the  regularities  we  need

graphical aids, and that is what clustering methods provide.

3.2 Vector space

Though it is just a sequence of numbers, a vector can be geometrically

interpreted (Anton 2005; Poole 2005; Blyth and Robertson 2002). To see how,

take a vector consisting of two elements, say v = (30,70). Under a geometrical

interpretation,  the  two  elements  of  v define  a  two-dimensional  space,  the

numbers at v1 = 30 and v2 = 70 are coordinates in that space, and the vector v

itself is a point at the coordinates (30,70), as shown in figure 10.

Figure 10

A vector consisting of three elements, say  v = (40, 20, 60) defines a three-

dimensional space in which the coordinates of the point v are 40 along the

horizontal axis, 20 along the vertical axis, and 60 along the third axis shown in

perspective, as in figure 11. 

Figure 11

A vector v = (22, 38, 52, 12) defines a four-dimensional space with a point at

the stated coordinates, and so on to any dimensionality  n. Vector spaces of

dimensionality  greater  than  3  are  impossible  to  visualize  directly  and  are

therefore counterintuitive, but mathematically there is no problem with them;



two  and  three  dimensional  spaces  are  useful  as  a  metaphor  for

conceptualizing higher-dimensional ones. 

When numerous vectors exist in a space, it may or may not be possible

to see interesting structure in the way they are arranged in it. Figure 12 shows

vectors  in  two  and  three  dimensional  spaces.  In  (a)  they  were  randomly

generated and there is no structure to be observed, in (b) there are two clearly

defined concentrations in two dimensional  space, and in (c)  there are two

clearly defined concentrations in three-dimensional space. 

Figure 12

The existence of concentrations like those in (b) and (c) indicate relationships

among  the  entities  that  the  vectors  represent.  In  (b),  for  example,  if  the

horizontal  axis  measures weight  and the  vertical  one height  for  a  sample

human population, then members of the sample fall into two groups: tall, light

people on the one hand, and short heavy ones on the other. 

This  idea  of  identifying  clusters  of  vectors  in  vector  space  and

interpreting them in terms of what the vectors represent is the basis of cluster

analysis.  In  what  follows,  we  shall  be  attempting  to  group  the  NECTE

speakers on the basis of their phonetic usage by looking for clusters in the

arrangement of the row vectors of M in 158-dimensional space.

3.3 Cluster analysis

Where the vectors are two or three-dimensional they can simply be

plotted and any clusters will be visually identifiable, as we have just seen. But

what about when the vector dimensionality is greater than 3 -say 4, or 10, or

100? In such a case direct plotting is not an option. How exactly would one



draw a 6-dimensional space, for example? Many data matrix row vectors have

dimensionalities greater than 3 -the NECTE matrix M has dimensionality 158-

and,  to  identify  clusters  in  such high-dimensional  spaces some procedure

more general than direct plotting is required. A variety of such procedures is

available, and they are generically known as cluster analysis methods. This

section looks at these methods. 

The literature on cluster analysis is extensive. A few recent books are

(Everitt 2001; Kaufman and Rousseeuw 2005), but many textbooks in fields like

multivariate  statistical  analysis,  information  retrieval,  and  data  mining  also

contain useful and accessible discussions, and there are numerous relevant

and often excellent websites.

The discussion of cluster analysis is in four parts. The first introduces

distance  in  vector  space,  the  second  describes  one  particular  class  of

clustering methods, the third applies that type of method to the NECTE data

matrix M, and the fourth interprets the result of the NECTE analysis.

3.3.1 Distance in vector space

Where there  are  two  or  more  vectors  in  a  space,  it  is  possible  to

measure the distance between any two of them and to rank them in terms of

their  proximity  to  one  another.  Figure  13  shows  a  simple  case  of  a  2-

dimensional space in which the distance from vector A to vector B is greater

than the distance from A to C. 

Figure 13



There are various ways of measuring such distances, but the most often used

is the familiar Euclidean one: 

22 )24()15()( ABdist

Figure 14

3.3.2 Cluster analysis methods

Cluster  analysis  methods  use  relative  distance  among vectors  in  a

space to group the vectors into clusters. Specifically, for a given set of vectors

in a space, they first calculate the distances between all pairs of vectors, and

then group into clusters all the vectors that are relatively close to one another

in the space and relatively far from those in other clusters. 'Relatively close'

and 'relatively far' are, of course, vague expressions, but they are precisely

defined by the various clustering methods, and for present purposes we can

avoid the technicalities and rely on intuitions about relative distance.

For  concreteness,  we  will  concentrate  on  one  particular  class  of

methods:  hierarchical  cluster  analysis,  which  represents  the  relativities  of

distance among vectors as a tree. Figure 15 exemplifies this. 

Figure 15

Column  (a)  shows  a  30  x  2  data  matrix  that  is  to  be  cluster  analyzed.

Because the data space is 2-dimensional the vectors can be directly plotted

to  show  the  cluster  structure,  as  in  the  upper  part  of  column  (b).  The

corresponding hierarchical cluster tree is shown in the lower part of column

(b). Linguists use such trees as representations of sentence phrase structure,

but cluster trees differ from linguistic ones in the following respects:



 The  leaves  are  not  lexical  tokens  but  labels  for  the  data  items  -the

numbers  at  the  leaves  correspond  to  the  numerical  labels  of  the  row

vectors in the data matrix. 

 They represent not grammatical constituency but relativities of distance

between  clusters.  The  lengths  of  the  branches  linking  the  clusters

represent degrees of closeness: the shorter the branch, the more similar

the clusters. In cluster A vectors 4 and 19 are very close and thus linked

with very short lines; 2 and 3 are almost but not quite as close as 4 and

19, and are therefore linked with slightly longer lines, and so on. 

Knowing this, the tree can be interpreted as follows. There are three clusters

labelled A, B, and C in each of which the distances among vectors are quite

small. These three clusters are relatively far from one another, though A and

B are closer to one another than either of them is to C. Comparison with the

vector  plot  shows  that  the  hierarchical  analysis  accurately  represents  the

distance relations among the 30 vectors in 2-dimensional space. 

Given that the tree tells us nothing more than what the plot tells us,

what is gained? In the present case, nothing. The real power of hierarchical

analysis  lies in  its independence of vector  space dimensionality.  We have

seen that direct plotting is limited to three or fewer dimensions, but there is no

dimensionality  limit  on  hierarchical  analysis  -it  can  determine  relative

distances in vector spaces of any dimensionality and represent those distance

relativities  as  a  tree  like  the  one  above.  To  exemplify  this,  the  158-



dimensional NECTE data matrix M was hierarchically cluster analyzed, and

the results of the analysis are shown in the next section.

3.3.3 Hierarchical cluster analysis of the NECTE data

Recall that the NECTE data is a 63 x 158 matrix M in which each of the

63 rows represents a speaker,  each of the columns represents a phonetic

segment, and the value at Mij is the number of times speaker i uses phonetic

segment  j.  Each  row  vector  is  therefore  a  phonetic  profile  of  a  different

NECTE speaker; the aim is to classify the speakers in terms of the similarity

of their phonetic profiles or, put another way, in terms of the relative distances

among the row vectors in the 158-dimensional space. The resulting tree is

shown in figure 16.

Figure 16

Plotting  M  in  158-dimensional  space  would  have  been  impossible,  and,

without cluster analysis, one would have been left pondering a very large and

incomprehensible  matrix  of  numbers.  With  the  aid  of  cluster  analysis,

however, structure in the data is clearly visible: there are two main clusters,

NG1 and NG2; NG1 consists of large subclusters NG1a and NG1b; NG1a

itself has two main subclusters NG1a(i) and NG1a(ii). 

4. HYPOTHESIS GENERATION

Given that there is structure in the relative distances of the row vectors

of M, what does that structure mean in terms of the research question? 



'Is  there  systematic  phonetic  variation  in  the  Tyneside  speech

community, and, if so, what are the main phonetic determinants of

that variation?'. 

Because the row vectors of M are phonetic profiles of the NECTE speakers,

the cluster structure means that the speakers fall into clearly defined groups

with  specific  interrelationships  rather  than,  say,  being  randomly distributed

around the phonetic space. A reasonable hypothesis to answer the first part of

the research question, therefore, is that there is systematic variation in the

Tyneside speech community.  This hypothesis can be refined by examining

the social data relating to the NECTE speakers, which shows, for example,

that all those in the NG1 cluster come from the Gateshead area on the south

side of the river Tyne and all those in NG2 come from Newcastle on the north

side,  and  that  the  subclusters  in  NG1  group  the  Gateshead  speakers  by

gender and occupation.

The cluster tree can also be used to generate a hypothesis in answer

to the second part of the research question. So far we know that the NECTE

speakers fall into clearly-demarcated groups on the basis of variation in their

phonetic usage. We do not, however, know why, that is, which segments out

of the 158 in the TLS transcription scheme are the main determinants of this

regularity. To identify these segments (Moisl & Maguire 2008), we begin by

looking at the two main clusters NG1 and NG2 to see which segments are

most important in distinguishing them. 

The first step is to create for the NG1 cluster a vector that captures the

general  phonetic characteristics of  the speakers it  contains,  and to  do the



same for the NG2. Such vectors can be created by averaging all  the row

vectors in a cluster using the formula

where vj is the jth element of the average or 'centroid' vector v (for j  = 1..the

number of columns in M),  M is the data matrix, Σ designates summation, and

m is the number of row vectors in the cluster in question (56 for NG1, 7 for

NG2). This yields two centroid vectors.

Next,  compare the two centroid vectors by co-plotting them to show

graphically how, on average, the two speaker groups differ on each of the 158

phonetic  segments;  a  plot  of  all  158 segments is  too dense to  be readily

deciphered, so the six on which the NG1 and NG2 centroids differ most are

shown in Figure 17.

Figure 17

The six phonetic segments most important in distinguishing cluster NG1 from

NG2 are  three  varieties  of  [ə],  [ɔː],  [ɪ],  and  [eɪ]:  the  Newcastle  speakers

characteristically use Ə1 and Ə2  whereas the Gateshead speakers use them

hardly at all, the Gateshead speakers use Ə3 much more than the Newcastle

speakers,  and  so  on.  A  hypothesis  that  answers  the  second  part  of  the

research question is therefore that the main determinants of phonetic variation

in the Tyneside speech community are three kinds of [ə], [ɔː], [ɪ], and [eɪ]. The



subclusters of NG1 can be examined in the same way and the hypothesis

thereby further refined. 

Having formulated two hypotheses about Tyneside speech, they need

to be tested against additional evidence from a source or sources other than

NECTE and emended or even discarded if that is what the evidence requires.

5. SUMMARY

This  discussion  set  out  to  show  how  one  type  of  computational

analytical tool, cluster analysis, can be used to generate hypotheses about

large  digital  linguistic  corpora  when  the  data  abstracted  from them is  too

complex to be interpreted by direct inspection. This approach to hypothesis

generation is useful  primarily when dealing with  corpora in languages that

have been relatively little studied, such as endangered languages, but even

for intensively-studied ones like English, where hypotheses can usually be

generated from the existing research literature, cluster analysis can produce

surprises, as Moisl and Maguire (2008) showed for Tyneside English.

6. WHERE TO GO NEXT

The foregoing discussion was introductory, and anyone wishing to use

cluster analysis in actual research applications has some additional reading to

do. There is no shortage of such reading: the literature on cluster analysis,

both in traditional printed form and on the Web, is extensive. Much of it is,

however,  quite technical, and this can be an obstacle to those new to the

subject.  It's  important  to  have  a  secure  intuitive  grasp  of  the  underlying

concepts before trying to assimilate the technicalities, so a good way into the



literature is to start with the Web, using 'cluster analysis' as the search string.

There  are  numerous  good  and  even  excellent  introductory-level  cluster

analysis websites, and working through these lays the groundwork for more

advanced reading. Romesburg (1984) is an accessible first textbook, followed

by Everitt et al. (2001); the latter contains an extensive bibliography for further

reading.

Knowing the theory of cluster analysis is a necessary but not sufficient

condition for using it in research. Software is required to do the actual work.

The standard statistics packages available in university and other research

environments include a few types of clustering method, but more specialized

ones  provide  a  greater  range  of  methods  and,  generally,  better  output

graphics; a Web search using the string 'cluster analysis  software'  gives a

good overview of what is available.  Also very useful are Web directories of

cluster analysis and related resources such as Fionn Murtagh's  Multivariate

Data  Analysis  Software  and  Resources  Page (http://astro.u-

strasbg.fr/~fmurtagh/mda-sw/).

The data to be cluster analyzed may contain characteristics that can

distort the result or even render it invalid as a basis for hypothesis generation.

These characteristics, which include variation in the lengths of documents in

multi-document corpora, data sparsity, and nonlinearity, must be recognized

and where necessary eliminated or at least mitigated prior to undertaking the

analysis.  Given its  importance,  the research literature contains surprisingly

little on such matters; see Pyle (1999) and Moisl (2007, 2008b, 2010)

Finally, anyone proposing to use cluster analysis has to face the reality

that, to do so respectably, knowledge of the basics of linear algebra and of



statistics is a prerequisite. Some introductory textbooks on linear algebra are

Anton (2005), Blyth (2002), and Poole (2005); introductory statistics textbooks

are  too  numerous  to  require  individual  mention,  and  are  available  in  any

research library as well as on the Web.

7.  THE FUTURE FOR CLUSTER ANALYSIS IN LINGUISTIC VARIATION

STUDIES

Cluster analysis has long been and continues to be a standard data

processing tool across a broad range of physical and social  sciences. The

advent of digital electronic text in the second half of the twentieth century has

driven  the  emergence  of  research  disciplines  devoted  to  search  and

interpretation of large digital natural language document collections, among

them Information Retrieval (Manning  et al. 2008), Data Mining (Hand  et al.

2001),  Computational  Linguistics  (Mitkov  2005),  and  Natural  Language

Processing (Manning and Schütze 1999), and here too cluster analysis is a

standard tool. As increasingly large digital  collections become available for

research into linguistic variation,  traditional  analytical  methods will  become

intractable,  and  use  of  the  computational  tools  developed  by  these  text

processing disciplines, including cluster analysis, will become the only realistic

option.
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Figure 1: The NECTE dialect area



Figure 2: Extract from the TLS transcription scheme



Figure 3: A numerical vector



Figure 4: A NECTE data vector



Figure 5: A fragment of the NECTE data matrix M



 Age

Person 1 14

Person 2 12

Person 3 15

Person 4 41

Person 5 47

Person 6 43

Person 7 83

Person 8 76

Person 9 81

Figure 6: Univariate data



 Age Weight (kg)

Person 1 14 25

Person 2 12 21

Person 3 15 26

Person 4 41 83

Person 5 47 82

Person 6 43 80

Person 7 83 71

Person 8 76 73

Person 9 81 72

Figure 7: Bivariate data



 Age Weight (kg) Height (m) Size of family Years worked Trips abroad

Person 1 14 25 1.4 5 2 2

Person 2 12 21 1.36 5 0 0

Person 3 15 26 1.5 4 1 1

Person 4 41 83 1.74 7 15 46

Person 5 47 82 1.72 3 17 23

Person 6 43 80 1.66 6 21 0

Person 7 83 71 1.65 2 36 12

Person 8 76 73 1.68 5 34 29

Person 9 81 72 1.81 4 42 0

Figure 8: Multivariate data



 dinitial εμ n  binitial aI kinitial Ɩ  a kfinal  tʃ æ pmedial

Speaker 1 22 19 177 39 6 44 13 11 47 10 37 8

Speaker 2 27 6 210 32 9 45 18 8 40 17 46 6

Speaker 3 32 16 188 57 8 27 23 6 29 6 42 6

Speaker 4 33 20 191 45 6 47 21 16 40 3 42 7

Speaker 5 43 27 304 58 13 53 28 12 74 14 76 10

Speaker 6 34 9 202 54 14 26 14 14 45 5 53 6

Speaker 7 33 0 222 27 54 47 27 11 40 16 51 18

Speaker 8 22 16 186 41 3 56 19 10 29 8 53 8

Speaker 9 30 27 214 54 12 29 20 6 45 7 54 8

Figure 9: Multivariate NECTE data



Figure 10: A vector in two-dimensional space



Figure 11: A vector in three-dimensional space



Figure 12: Multiple vectors in two and three dimensional spaces



Figure 13: Distance between vectors in two-dimensional space



Figure 14: Euclidean distance calculation: 'In a right-angled triangle,

the square of the length of the hypotenuse is equal to the sum of the

squares of the lengths of the other two sides'.



v1 v2

1 27 46

2 29 48

3 30 50

4 32 51

5 34 54

6 55 9

7 56 9

8 60 10

9 63 11

10 64 11

11 78 72

12 79 74

13 80 70

14 84 73

15 85 69

16 27 55

17 29 56

18 30 54

19 33 51

20 34 56

21 55 13

22 56 15

23 60 13

24 63 12

25 64 10

26 84 72

27 85 74

28 77 70

29 76 73



30 76 69

a b

Figure 15: Hierarchical cluster analysis of two-dimensional data





Figure 16: Hierarchical cluster analysis of the NECTE data matrix M



Figure 17: Co-plot of centroids for NG1 and NG2


